Citation: Hu Lijuan, Wu Feng, Peng Shanzhi, Li Jinjun. Progress in Preparation and Utilization of Biomass-based Activated Carbons[J]. Chemistry, ;2016, 79(3): 205-212. shu

Progress in Preparation and Utilization of Biomass-based Activated Carbons

  • Corresponding author: Li Jinjun, 
  • Received Date: 8 July 2015
    Available Online: 18 November 2015

    Fund Project:

  • Biomass-based activated carbons have the advantages including renewable and abundant raw materials, low cost, large specific surface area, developed porous structure as well as good thermal and chemical stability, and they are widely used in agriculture, environmental remediation, chemical industry, energy storage and other fields. This paper reviews the preparation strategies of biomass-based activated carbons, factors influencing the properties, surface modification methods and the applications. Their application in adsorption, catalysis, gas storage, electrode and supercapacitor are also summarized.
  • 加载中
    1. [1]

      [1] M Ahmad, A U Rajapaksha, J E Lim et al. Chemosphere. 2014, 99:19~33.

    2. [2]

      [2] 陈温福,张伟明,孟军等. 中国工程科学, 2011(02):83~89.

    3. [3]

      [3] Y A Alhamed. JKAU:Eng. Sci., 2006, 17(2):75~100.

    4. [4]

      [4] N M Haimour, S Emeish. Waste Manage., 2006, 26(6):651~660.

    5. [5]

      [5] J Kim. J. Hazard. Mater., 2001, 85(3):301~315.

    6. [6]

      [6] M Ahmedna, W E Marshall, A A Husseiny et al. Water Res., 2004, 38(4):1062~1068.

    7. [7]

      [7] M Auta, B H Hameed. Chem. Eng. J., 2011, 175:233~243.

    8. [8]

      [8] I I Gurten, M Ozmak, E Yagmur et al. Biomass and Bioenergy, 2012, 37:73~81.

    9. [9]

      [9] K Kadirvelu, M Kavipriya, C Karthika et al. Bioresour Technol., 2003, 87(1):129~132.

    10. [10]

      [10] N Bagheri, J Abedi. Chem. Eng. Res. Design, 2009, 87(8):1059~1064.

    11. [11]

      [11] K Y Foo, B H Hameed. Chem. Eng. J., 2012, 184:57~65.

    12. [12]

      [12] A L Cazetta, A M M Vargas, E M Nogami et al. Chem. Eng. J., 2011, 174(1):117~125.

    13. [13]

      [13] X Dong, L Q Ma, Y Li. J. Hazard. Mater., 2011, 190(1-3):909~915.

    14. [14]

      [14] B S Girgis, S S Yunis, A M Soliman. Mater. Lett., 2002, 57(1):164~172.

    15. [15]

      [15] P K Malik. Dyes Pig., 2003, 56(3):239~249.

    16. [16]

      [16] A A Ahmad, B H Hameed. J. Hazard. Mater., 2010, 173(1-3):487~493.

    17. [17]

      [17] S M Yakout, G Sharaf El-Deen. Arab. J. Chem., 2011, DOI:10.1016/j.arabjc.2011.12.002.

    18. [18]

      [18] J Jaramillo, V Gómez-Serrano, P Málvarez. J. Hazard. Mater., 2009, 161(2-3):670~676.

    19. [19]

      [19] J M Rosas, J Bedia, J Rodríguez-Mirasol et al. Fuel Proc. Technol., 2010, 91(10):1345~1354.

    20. [20]

      [20] L C A Oliveira, E Pereira, I R Guimaraes et al. J. Hazard. Mater., 2009, 165(1-3):87~94.

    21. [21]

      [21] M Fan. Bioresource Technol., 2004, 93(1):103~107.

    22. [22]

      [22] Y Sudaryanto, S B Hartono, W Irawaty et al. Bioresource Technol., 2006, 97(5):734~739.

    23. [23]

      [23] 李力,刘娅,陆宇超等. 环境化学, 2011, 30(8):1411~1421.

    24. [24]

      [24] S Kumar, V A Loganathan, R B Gupta et al. J. Environ. Manage., 2011, 92(10):2504~2512.

    25. [25]

      [25] 任楠,夏建超,董安钢等. 洁净煤技术, 2001,(2):46~50.

    26. [26]

      [26] A C Lua, T Yang. J. Colloid Interf. Sci., 2005, 290(2):505~513.

    27. [27]

      [27] O Ioannidou, A Zabaniotou. Renew. Sustain. Energy Rev., 2007, 11(9):1966~2005.

    28. [28]

      [28] T Yang, A C Lua. J. Colloid Interf. Sci., 2003, 267(2):408~417.

    29. [29]

      [29] G H Oh, C R Park. Fuel, 2002, 81(3):327~336.

    30. [30]

      [30] Z Hu, H Guo, M P Srinivasan et al. Sep. Purif. Technol., 2003, 31(1):47~52.

    31. [31]

      [31] Y Ji, T Li, L Zhu et al. Appl. Surf.Sci., 2007, 254(2):506~512.

    32. [32]

      [32] R H Hesas, W M A W Daud, J N Sahu et al. J. Anal. Appl. Pyrol., 2013, 100:1~11.

    33. [33]

      [33] K Yang, J Peng, C Srinivasakannan et al. Bioresource Technol., 2010, 101(15):6163~6169.

    34. [34]

      [34] K Y Foo, B H Hameed. Bioresource Technol., 2012, 119:234~240.

    35. [35]

      [35] J Yang, K Qiu. Chem. Eng. J., 2010, 165(1):209~217.

    36. [36]

      [36] D Kalderis, S Bethanis, P Paraskeva et al. Bioresource Technol., 2008, 99(15):6809~6816.

    37. [37]

      [37] S K Theydan, M J Ahmed. J. Anal. Appl. Pyrol., 2012, 97:116~122.

    38. [38]

      [38] R Baccar, J Bouzid, M Feki et al. J. Hazard. Mater., 2009, 162(2-3):1522~1529.

    39. [39]

      [39] J Hayashi, T Horikawa, K Muroyama et al. Micropor. Mesopor. Mater, 2002, 55(1):63~68.

    40. [40]

      [40] W Li, L Zhang, J Peng et al. Ind. Crop. Prod., 2008, 27(3):341~347.

    41. [41]

      [41] B H Hameed, A L Ahmad, K N A Latiff. Dyes Pig., 2007, 75(1):143~149.

    42. [42]

      [42] R Tseng. J. Hazard. Mater., 2007, 147(3):1020~1027.

    43. [43]

      [43] B K Hamad, A M Noor, A R Afida et al. Desalination, 2010, 257(1-3):1~7.

    44. [44]

      [44] B Hameed, A Din, A Ahmad. J. Hazard. Mater., 2007, 141(3):819~825.

    45. [45]

      [45] Z Merzougui, F Addoun. Desalination, 2008, 222(1-3):394~403.

    46. [46]

      [46] Y H Li, C W Lee, B K Gullett. Fuel, 2003, 82(4):451~457.

    47. [47]

      [47] A E Aksoylu, M Madalena, A Freitas et al. Carbon, 2001, 39(2):175~185.

    48. [48]

      [48] M Domingo-García, F J López-Garzón, M Pérez-Mendoza. J. Colloid Interf. Sci., 2000, 222(2):233~240.

    49. [49]

      [49] W Qiao, Y Korai, I Mochida et al. Carbon, 2002, 40(3):351~358.

    50. [50]

      [50] T García, R Murillo, D Cazorla-Amorós et al. Carbon, 2004, 42(8-9):1683~1689.

    51. [51]

      [51] N Zhao, N Wei, J Li et al. Chem. Eng. J., 2005, 115(1-2):133~138.

    52. [52]

      [52] M Sánchez-Polo, J Rivera-Utrilla. Environ. Sci. Technol., 2002, 36(17):3850~3854.

    53. [53]

      [53] H Valdés, M Sánchez-Polo, J Rivera-Utrilla et al. Langmuir, 2002, 18(6):2111~2116.

    54. [54]

      [54] R Considine, R Denoyel, P Pendleton et al. Colloids Surf. A:Physicochem. Eng. Asp., 2001, 179(2-3):271~280.

    55. [55]

      [55] 陈孝云,林秀兰,魏起华等. 科学技术与工程, 2008, 8(19):5463~5467.

    56. [56]

      [56] Z Zhang, M Xu, H Wang et al. Chem. Eng. J., 2010, 160(2):571~577.

    57. [57]

      [57] F W Shaarani, B H Hameed. Chem. Eng. J., 2011, 169(1-3):180~185.

    58. [58]

      [58] 李德伏,曾海,王金渠等. 石油化工, 2001,(9):677~680.

    59. [59]

      [59] R Leyva Ramos, J Ovalle-Turrubiartes, M A Sanchez-Castillo. Carbon, 1999, 37(4):609~617.

    60. [60]

      [60] M Zhang, B Gao, Y Yao et al. Chem. Eng. J., 2012, 210:26~32.

    61. [61]

      [61] M Zhang, B Gao. Chem. Eng. J., 2013, 226:286~292.

    62. [62]

      [62] 张巧丽,陈旭,袁彪. 天津大学学报, 2005,(4):361~364.

    63. [63]

      [63] 李子龙,马双枫,王栋等. 环境科学与管理, 2009, 34(10):88~92.

    64. [64]

      [64] C Yin, M Aroua, W Daud. Sep. Purif. Technol., 2007, 52(3):403~415.

    65. [65]

      [65] A A M Daifullah, B S Girgis. Colloids Surf. A:Physicochem. Eng. Asp., 2003, 214(1-3):181~193.

    66. [66]

      [66] M Franz, H A Arafat, N G Pinto. Carbon, 2000, 38(13):1807~1819.

    67. [67]

      [67] D Mohan, C U Pittman Jr. J. Hazard. Mater., 2006, 137(2):762~811.

    68. [68]

      [68] M Kobya, E Demirbas, E Senturk et al. Bioresource Technol., 2005, 96(13):1518~1521.

    69. [69]

      [69] A Daifullah, S Yakout, S Elreefy. J. Hazard. Mater., 2007, 147(1-2):633~643.

    70. [70]

      [70] N M Nor, L C Lau, K T Lee et al. J. Environ. Chem. Eng., 2013, 1(4):658~666.

    71. [71]

      [71] K Kante, E Deliyanni, T J Bandosz. J. Hazard. Mater., 2009, 165(1-3):704~713.

    72. [72]

      [72] P Nowicki, H Wachowska, R Pietrzak. J. Hazard. Mater., 2010, 181(1-3):1088~1094.

    73. [73]

      [73] M C Macías-Pérez, A Bueno-López, M A Lillo-Ródenas et al. Fuel, 2007, 86(5-6):677~683.

    74. [74]

      [74] H Tseng, M Wey, C Fu. Carbon, 2003, 41(1):139~149.

    75. [75]

      [75] G Skodras, I Diamantopoulou, A Zabaniotou et al. Fuel Proc. Technol., 2007, 88(8):749~758.

    76. [76]

      [76] M A Hossain, H H Ngo, W S Guo et al. Desal. Water Treat., 2014, 52(4-6):844~860.

    77. [77]

      [77] T Budinova, D Savova, B Tsyntsarski et al. Appl. Surf. Sci., 2009, 255(8):4650~4657.

    78. [78]

      [78] P S Kumar, S Ramalingam, R V Abhinaya et al. Clean-Soil, Air, Water, 2012, 40(2):188~197.

    79. [79]

      [79] Q Jia, A C Lua. J. Anal. Appl. Pyrol., 2008, 83(2):175~179.

    80. [80]

      [80] I Rahman, B Saad, S Shaidan et al. Bioresource Technol., 2005, 96(14):1578~1583.

    81. [81]

      [81] B H Hameed, J M Salman, A L Ahmad. J. Hazard. Mater., 2009, 163(1):121~126.

    82. [82]

      [82] L Li, S Liu, J Liu. J. Hazard. Mater., 2011, 192(2):683~690.

    83. [83]

      [83] 赵波,韩文锋,霍超等.化学通报, 2004, 67(2):142(2004w013).

    84. [84]

      [84] L J Konwar, J Boro, D Deka. Renew. Sustain. Energy Rev., 2014, 29:546~564.

    85. [85]

      [85] 乌日娜,王同华,修志龙等. 催化学报, 2009(12):1203~1208.

    86. [86]

      [86] 乌日娜. 大连理工大学学位论文, 2009.

    87. [87]

      [87] 曲健林,韩敏,张秀丽等. 化工学报, 2015,(1):105~113.

    88. [88]

      [88] Y Li, X Li, J Li et al. Water Res., 2006, 40(6):1119~1126.

    89. [89]

      [89] A S G A Lez, M G Plaza, F Rubiera et al. Chem. Eng. J., 2013, 230:456~465.

    90. [90]

      [90] S Wei, Y Zhou, L Wei et al. New Carbon Mater., 2007, 22(2):135~140.

    91. [91]

      [91] C Zhang, Z Geng, M Cai et al. Int. J. Hydrogen Energy, 2013, 38(22):9243~9250.

    92. [92]

      [92] J Jiang, L Zhang, X Wang et al. Electrochim. Acta, 2013, 113:481~489.

    93. [93]

      [93] 刘亚菲,胡中华,任炼文等. 新型炭材料, 2007,(4):355~360.

  • 加载中
    1. [1]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    2. [2]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    3. [3]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    4. [4]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    5. [5]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    6. [6]

      Lixing ZHANGYaowen WANGXu HANJunhong ZHOUJinghui WANGLiping LIGuangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007

    7. [7]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    8. [8]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    9. [9]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    10. [10]

      Qianqian ZHULihui XUHong PANChengjian YAOHong ZHAONan MAXiaolin SHIZihan SHENWeijun ZHANGZhongjian WANG . Waste cotton fabric-ased porous carbon materials: Preparation and wave-absorbing properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1555-1564. doi: 10.11862/CJIC.20250040

    11. [11]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    12. [12]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    13. [13]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    14. [14]

      Jing ZhangSu ZhangQiqi LiLinken JiYutong LiYukang RenXiaobei ZangNing CaoHan HuPeng LiangZhuangjun Fan . Integrating high surface area and electric conductivity in activated carbon by in situ formation of the less-defective carbon network during selective chemical etching. Acta Physico-Chimica Sinica, 2025, 41(10): 100114-0. doi: 10.1016/j.actphy.2025.100114

    15. [15]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    16. [16]

      Zhonghan Xu Yuejia Li Kin Shing Chan . 碳中和新旅程. University Chemistry, 2025, 40(6): 167-171. doi: 10.12461/PKU.DXHX202407075

    17. [17]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    18. [18]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    19. [19]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    20. [20]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

Metrics
  • PDF Downloads(3)
  • Abstract views(767)
  • HTML views(81)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return