Citation: Wang Haiyan, Xie Fei, Wu Ming, Ren Shuai. Effect of Magnetic Field on Microbiologically-InfluencedCorrosion Behavior of 316L Stainless Steel[J]. Chemistry, ;2016, 79(4): 332-337. shu

Effect of Magnetic Field on Microbiologically-InfluencedCorrosion Behavior of 316L Stainless Steel

  • Corresponding author: Wu Ming, 
  • Received Date: 21 July 2015
    Available Online: 13 October 2015

    Fund Project:

  • The common corrosion behavior of 316L stainless steel is pitting corrosion. In this work, the electrochemical cycle polarization test, microbiological analysis, surface morphology and energy spectrum analysis were used to investigate the influence of magnetic field on the corrosion of 316L stainless steel in soil simulated solution containing SRB. The results showed that apply of magnetic field can inhibit the growth of SRB. There were local accumulation on surface film of 316L stainless steel without magnetic field, and the surface film uniformly arranges on the surface of substrate when applying magnetic field and the local accumulation areas decrease significantly. The pitting corrosion behaviors of 316L stainless steel in soil solution were both film rupture with or without magnetic fields and the pitting potential without applying magnetic field is lower than that of with magnetic field. Under the same immersion time, the area of lap ring with applying magnetic field is smaller than that of without applying magnetic field. The presence of magnetic field can effectively inhibit the formation and development of the pitting corrosion of 316L stainless steel and reduce the ability of induce pitting.
  • 加载中
    1. [1]

      [1] D Xu, J Wen, T Gu et al. Corrosion, 2012, 68(11):1082~1089.

    2. [2]

      [2] S Maruthamuthu, B D Kumar, S Ramachandran et al. Ind. Eng. Chem. Res., 2011, 50(13):8006~8015.

    3. [3]

      [3] T Wu, J Xu, C Sun et al. Corr. Sci., 2014, 88(16):291~305.

    4. [4]

      [4] C Sun, J Xu, F H Wang et al. Mater. Chem. Phys., 2011, 126(1):330~336.

    5. [5]

      [5] E Miranda, M Bethencourt, F J Botana et al. Corr. Sci., 2006, 48(9):2417~2431.

    6. [6]

      [6] H Wang, C Hu, X Hu et al. Water Res., 2012, 46(4):1070~1078.

    7. [7]

      [7] Y Wan, D Zhang, H Q Liu et al. Electrochim. Acta, 2010, 55(5):1528~1534.

    8. [8]

      [8] 吴堂清, 丁万成, 曾德春等.中国腐蚀与防护学报, 2014, 34(4):346~352.

    9. [9]

      [9] R Stadler, W Fuerbeth, K Harneit et al. Electrochim. Acta, 2008, 54:91~99.

    10. [10]

      [10] L Zhang, S P De, G B De et al. Water Res., 2008, 42(1~2):1~12.

    11. [11]

      [11] M Kohno, M Yamazaki, I Kimura et al. Pathophysiology, 2000, 7(2):143~148.

    12. [12]

      [12] 陈碧, 秦双, 陈蕾等. 腐蚀科学与防护技术, 2014, 26(6):499~504.

    13. [13]

      [13] R Sueptitz, K Tschulik, M Uhlemann et al. Corr. Sci., 2011, 53(10):3222~3230.

    14. [14]

      [14] F F Curiel, R García, V H López et al. Corr. Sci., 2011, 53(7):2393~2399.

    15. [15]

      [15] B Y Yuan, C Wang, L Li et al. Corr. Sci., 2012, 58:69~78.

    16. [16]

      [16] 董超芳, 骆鸿, 肖葵等. 四川大学学报, 2012, 44(3):179~184.

    17. [17]

      [17] 林晶, 阎永贵, 马力等. 全面腐蚀控制, 2006, 20(2):9~12.

    18. [18]

      [18] 刘彤, 张艳飞, 陈旭等. 中国腐蚀与防护学报, 2014, 34(2):112~118.

    19. [19]

      [19] 李付绍, 安茂忠, 刘光洲等. 金属学报, 2009, 45(5):536~540.

    20. [20]

      [20] F Li, M An, G Liu et al. Mater. Chem. Phys., 2009, 113:971~976.

    21. [21]

      [21] 王长罡, 董俊华, 柯伟等. 金属学报, 2012, 48(1):85~93.

    22. [22]

      [22] P Ernst, N J Laycock, M H Moayed et al. Corr. Sci., 1999, 39(6):1133.

    23. [23]

      [23] M A Amin. Corr. Sci., 2010, 52(10):3243~3257.

    24. [24]

      [24] M Kamran, F Hussain, R Ahmad et al. Properties of Lanthanum Hexaboride, 2013, 344:1~7.

    25. [25]

      [25] F L Roe, Z Lewandowski, T Funk. Corrosion, 1996, 52(10):744~752.

    26. [26]

      [26] 胥聪敏, 张耀亨, 程光旭等. 材料热处理学报, 2006, 27(5):64~69.

  • 加载中
    1. [1]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    2. [2]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    3. [3]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    4. [4]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    5. [5]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    6. [6]

      Shanying Chen Kangning Huo Ke Qi Jingyi Li Shuxin Li Yunchao Li . A Novel Colloid Electrophoresis Experiment with the Characteristics of Resource Recycling and Inquiry-Driven Experimental Design. University Chemistry, 2024, 39(5): 274-286. doi: 10.3866/PKU.DXHX202311067

    7. [7]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    8. [8]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    9. [9]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    10. [10]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    11. [11]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    12. [12]

      Lubing QinFang SunMeiyin LiHao FanLikai WangQing TangChundong WangZhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008

    13. [13]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    14. [14]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    15. [15]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    16. [16]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    17. [17]

      Liangyu Gong Jie Wang Fengyu Du Lubin Xu Chuanli Ma Shihai Yan Zhuwei Song Fuheng Liu Xiuzhong Wang . Construction and Practice of “One-Point, Two-Lines and Three-Sides” Innovative Experimental Platform. University Chemistry, 2024, 39(4): 26-32. doi: 10.3866/PKU.DXHX202308023

    18. [18]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    19. [19]

      Hongyan Feng Weiwei Li . Reflections on the Safety of Chemical Science Popularization Activities. University Chemistry, 2024, 39(9): 379-384. doi: 10.12461/PKU.DXHX202404087

    20. [20]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

Metrics
  • PDF Downloads(1)
  • Abstract views(707)
  • HTML views(124)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return