Citation: Zhu Hanlin, Liang Kuang. Study on Visible-Light Photocatalytic Properties of Oxygen Defect SnO2 Nanoparticles[J]. Chemistry, ;2016, 79(4): 327-331,348. shu

Study on Visible-Light Photocatalytic Properties of Oxygen Defect SnO2 Nanoparticles

  • Received Date: 13 August 2015
    Available Online: 20 October 2015

  • A novel photocatalyst consisting of oxygen-deficient SnO2 nanoparticles which can effectively degrade methyl orange (MO) under visible light was synthesized by a simple hydrothermal method and characterized by XRD, TEM, HRTEM and UV-Vis diffuse reflectance spectra. The results showed that the band gap of as-prepared catalyst can be lowered to 2.90eV, and thus the visible light absorption of the catalyst can be enhanced. The photocatalytic activity of the as-prepared catalyst was evaluated by degradation of methyl orange (MO) under irradiation of visible light. The degradation rate of MO (10 mg/L) by oxygen-deficient SnO2 nanoparticles (1g/L) can reach above 99% in 40 min under visible light illumination. Because of simple synthesis, high catalytic performance, low costs and mild reaction environment, the synthesized catalyst provides a new approach to solve the problem of organic dyes pollution in environment.
  • 加载中
    1. [1]

      [1] D Wang, L Guo, Y Zhen et al. J. Mater. Chem. A, 2014, 2(30):11716~11727.

    2. [2]

      [2] 马瑞, 万霞, 铁绍龙. 华南师范大学学报:自然科学版, 2014, 46(2):61~66.

    3. [3]

      [3] 施冬梅, 李再兴, 多金环. 环境科学与技术, 2002, 25(5):46~48.

    4. [4]

      [4] A Kocakuşakoğlu, M Dağlar, M Konyar et al. J.Eur. Ceramic Soc., 2015, 35(10):2845~2853.

    5. [5]

      [5] 张红美, 孔德国, 罗华平等.湖北农业科学, 2012, (22):5048~5050.

    6. [6]

      [6] X Zhang, X B Wang, L W Wang et al. ACS Appl. Mater. Interf., 2014, 6(10):7766~7772.

    7. [7]

      [7] 赵伟荣, 施巧梦, 刘莹. 物理化学学报, 2014, 30(7):1318~1324.

    8. [8]

      [8] T K Jana, A Pal, K Chatterjee. J. Alloys Compd., 2014, 583:510~515.

    9. [9]

      [9] L Fu, Y Zheng, Q Ren et al. J. Ovonic Res., 2015, 11(1):21~26.

    10. [10]

      [10] 陈薇, 孙丰强. 华南师范大学学报:自然科学版, 2014, 46(3):56~59.

    11. [11]

      [11] 王艺聪, 张晓凤, 曾嘉莹等. 材料导报, 2011, 25(16):70~74.

    12. [12]

      [12] R Yin, Q Luo, D Wang et al. J. Mater. Sei.,2014, 49(17):6067~6073.

    13. [13]

      [13] L P Singh, M N Luwang, S K Srivastava. New J. Chem., 2014, 38(1):115~121.

    14. [14]

      [14] 郭龙发, 潘海波, 沈水发等. 催化学报, 2009, 30(1):53~59.

    15. [15]

      [15] F M Hossain, G E Murch, L Sheppard et al. Solid State Ionics, 2007, 178(5):319~325.

    16. [16]

      [16] X Pan, M Q Yang, X Fu et al. Nanoscale, 2013, 5(9):3601~3614.

    17. [17]

      [17] X Liu, S Gao, H Xu et al. Nanoscale, 2013, 5(5):1870~1875.

    18. [18]

      [18] X Bai, L Wang, R Zong et al. Langmuir, 2013, 29(9):3097~3105.

    19. [19]

      [19] M Li, Y Hu, S Xie et al. Chem. Commun., 2014, 50(33):4341~4343.

    20. [20]

      [20] A Kar, S Sain, S Kundu et al. ChemPhysChem, 2015, 16(5):1017~1025.

    21. [21]

      [21] Z Zheng, B Huang, X Meng et al. Chem. Commun., 2013, 49(9):868~870.

    22. [22]

      [22] H Choi, J D Song, K R Lee et al. Inorg. Chem., 2015, 54(8):3759~3765.

    23. [23]

      [23] R Zha, R Nadimicherla, X Guo. J. Mater. Chem. A, 2015, 3(12):6565~6574.

    24. [24]

      [24] L Sun, Y Qin, Q Cao et al. Chem. Commun., 2011, 47(47):12628~12630.

    25. [25]

      [25] B Chai, X Liao, F Song et al. Dalton Transac., 2014, 43(3):982~989.

    26. [26]

      [26] Y Ding, F Yang, L Zhu et al. Appl. Catal. B:Environ., 2015, 164:151~158.

    27. [27]

      [27] Y Liu, Y Jiao, Z Zhang et al. ACS Appl. Mater. Interf., 2014, 6(3):2174~2184.

    28. [28]

      [28] Y Cho, W Choi, C H Lee et al. Environ. Sci. Technol., 2001, 35(5):966~970.

    29. [29]

      [29] R Velmurugan, M Swaminathan. Solar Energy Mater. Solar Cells, 2011, 95(3):942~950.

  • 加载中
    1. [1]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    2. [2]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    3. [3]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    4. [4]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    5. [5]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    6. [6]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    7. [7]

      Junjie TANGYunting ZHANGZhengjiang LIUJiani WU . Preparation of CeO2 by starch template method for photo-Fenton degradation of methyl orange. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1617-1631. doi: 10.11862/CJIC.20240420

    8. [8]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    9. [9]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    10. [10]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    11. [11]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    12. [12]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    13. [13]

      Juan CHENGuoyu YANG . A porous-layered aluminoborate built by mixed oxoboron clusters and AlO4 tetrahedra. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 193-200. doi: 10.11862/CJIC.20240341

    14. [14]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    15. [15]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    16. [16]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    17. [17]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    18. [18]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    19. [19]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    20. [20]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

Metrics
  • PDF Downloads(0)
  • Abstract views(385)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return