Citation: Xiang Tianchen, Zhao Qiang, Xue Yujing, Yan Kangping. Study on Preparation of Ni-P Micro-Arrays Material with Etched Porous Aluminum Template and Its Electrocatalytic Performance[J]. Chemistry, ;2016, 79(4): 321-326. shu

Study on Preparation of Ni-P Micro-Arrays Material with Etched Porous Aluminum Template and Its Electrocatalytic Performance

  • Corresponding author: Yan Kangping, 
  • Received Date: 12 September 2015
    Available Online: 23 October 2015

  • Ni-P micro-arrays material was fabricated by electroless plating method with etched porous aluminum template. The microstructure and elemental composition of the material were analyzed by SEM, EDS and XRD. Electrochemical measurements were performed to study the effect of plating temperature and time on the hydrogen evolution over-potential of Ni-P micro-arrays electrodes. The results showed that Ni-P micro-arrays electrode fabricated at 70℃ exhibits the highest electrocatalytic activity for hydrogen evolution reaction, and the over-potential was reduced by 100mV compared with the smooth Ni-P electrodes at 15 mA/cm2. Its exchange current density reached to 13.53×10-6A/cm2 which is about 10 times of the smooth group. Ni-P micro-arrays electrode has already formed the array structures completely after fabricated at 70℃ for 4h, it exhibits a low over-potential but no longer benefited from increasing time further. To characterize the catalytic performance of obtained coatings intuitively, photocatalytic water splitting experiments were performed in a two-compartment photoelectrochemical cell. As the cathode, Ni-P micro-arrays electrode shows a high hydrogen production rate which is about 200% faster than that of the smooth group.
  • 加载中
    1. [1]

      [1] F A Lewis, R C Johnston, M C Witherspoon et al. Surf. Technol., 1983, 18(2):147~166.

    2. [2]

      [2] F A Lewis, M N Hull, R C Johnston et al. Surf. Technol., 1983, 18(2):167~184.

    3. [3]

      [3] J P Bonino, S Bruet-Hotellaz, C Bories et al. J. Appl. Electrochem., 1997, 27(10):1193~1197.

    4. [4]

      [4] Y Gao, Z J Zheng, M Zhu et al. Mater. Sci. Eng.:A, 2004, 381(1):98~103.

    5. [5]

      [5] I Paseka. Electrochim. Acta, 1995, 40(11):1633~1640.

    6. [6]

      [6] R K Shervedani, A Lasia. J. Electrochem. Soc., 1997, 144(2):511~519.

    7. [7]

      [7] 王龙彪,吴俊,黄清安等. 材料保护, 2000, 2:1~2.

    8. [8]

      [8] M M V Parente, O R Mattos, S L Diaz et al. J. Appl. Electrochem., 2001, 31(6):677~683.

    9. [9]

      [9] R K Shervedani, A Lasia. J. Electrochem. Soc., 1998, 145(7):2219~2225.

    10. [10]

      [10] 高鸿毅, 王戈, 禹杰等. 化学通报, 2012, 75(9):796~803.

    11. [11]

      [11] E Endoh, H Otouma, T Morimoto et al. Int. J. Hydrogen Energy, 1987, 12(7):473~479.

    12. [12]

      [12] 王秀丽, 曾永飞, 卜显和. 化学通报, 2006, 68(10):723~730.

    13. [13]

      [13] 张华, 胡耀娟, 吴萍等. 物理化学学报, 2012(06):1545~1550.

    14. [14]

      [14] 袁新国, 彭乔. 材料保护, 2011, 44(8):1~3.

    15. [15]

      [15] Z Yang, H Xu, Y L Shi et al. Mater. Res. Bull., 2005, 40(6):1001~1009.

    16. [16]

      [16] S Shingubara. J. Nanoparticle Res., 2003, 5(1~2):17~30.

    17. [17]

      [17] Z L Xiao, C Y Han, U Welp et al. Nano Lett., 2002, 2(11):1293~1297.

    18. [18]

      [18] Y Xue, Y Sun, G Wang et al. Electrochim. Acta, 2015, 155:312~320.

    19. [19]

      [19] K De Long Herbert. USP 3,152,009,1964-10-6.

    20. [20]

      [20] 莫少波, 王龙彪. 化学物理学报, 2000, 13(4):487~491.

    21. [21]

      [21] I Paseka, J Velicka. Electrochim. Acta, 1997, 42(2):237~242.

    22. [22]

      [22] 查全性等著. 电极过程动力学导论(第三版). 北京:科学出版社, 2002:249~252.

  • 加载中
    1. [1]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    2. [2]

      Zhengyu ZhouHuiqin YaoYoulin WuTeng LiNoritatsu TsubakiZhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010

    3. [3]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    4. [4]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    5. [5]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    6. [6]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    7. [7]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    8. [8]

      Kai PENGXinyi ZHAOZixi CHENXuhai ZHANGYuqiao ZENGJianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454

    9. [9]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    10. [10]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    11. [11]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    12. [12]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    13. [13]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    14. [14]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    15. [15]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    17. [17]

      Yi ZHANGGuang LIWenxuan FANQingfeng YI . Influence of bismuth trisulfide on the electrochemical performance of iron electrode. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1196-1206. doi: 10.11862/CJIC.20240445

    18. [18]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    19. [19]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    20. [20]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

Metrics
  • PDF Downloads(1)
  • Abstract views(526)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return