Citation: Qiu Xiaomin, Li Yang, Song Jiangfeng, Zhou Ruisha. Advances of 2,6-Naphthalenedicarboxylic Acid-Based Coordination Polymers[J]. Chemistry, ;2016, 79(4): 304-313. shu

Advances of 2,6-Naphthalenedicarboxylic Acid-Based Coordination Polymers

  • Corresponding author: Zhou Ruisha, 
  • Received Date: 7 October 2015
    Available Online: 26 November 2015

    Fund Project:

  • 2,6-Naphthalenedicarboxylic acid is a linear and rigid ligand with multiple coordinating atoms. Up to now, more than 100 kinds of 2,6-naphthalenedicarboxylic acid-based coordination polymers were reported. These coordination polymers show the abundant topological structures and potential application values. Here the structural characteristics and coordination modes of 2,6-naphthalenedicarboxylic acid ligand and the research advances of 2,6-naphthalenedicarboxylic acid-based coordination polymers according to various species of metal ions were summarized briefly. The application properties of 2,6-naphthalenedicarboxylic acid-based coordination polymers in the gas adsorption and separation, photoluminescence, magnetism and heterogeneous catalysis aspects were focused on, and the research prospects of these coordination polymers were presented.
  • 加载中
    1. [1]

      [1] 李亮莎, 王可可, 黄宏亮等. 化工学报, 2014, 65(5):1706~1715.

    2. [2]

      [2] M H Xie, X L Yang, C Zou et al. Inorg. Chem., 2011, 50(12):5318~5320.

    3. [3]

      [3] C Y Sun, S X Liu, D D Liang et al. J. Am. Chem. Soc., 2009, 131(5):1883~1888.

    4. [4]

      [4] M R Lohe, K Gedrich, T Freudenberg et al. Chem. Commun., 2011, 47(11):3075~3077.

    5. [5]

      [5] B Kesanli, W Lin. Coord. Chem. Rev., 2003, 246(1):305~326.

    6. [6]

      [6] J A Kaduk, J A Hanko. J. Appl. Cryst., 2001, 34(6):710~714.

    7. [7]

      [7] H T Xu, Z L Xu. Micropor. Mesopor. Mater., 2012, 157:33~36.

    8. [8]

      [8] Y Du, A L Thompson, D O'Hare. Chem. Commun., 2008, (45):5987~5989.

    9. [9]

      [9] S H Kim, H S Huh, S W Lee. J. Mol. Struct., 2007, 841(1):78~87.

    10. [10]

      [10] 梁鸿, 雷智鸿, 李夏. 无机化学学报, 2010, (9):1595~1599.

    11. [11]

      [11] B L Chen, S Q Ma, E J Hurtado et al. Inorg. Chem., 2007, 46(21):8705~8709.

    12. [12]

      [12] L P Hsu, J Y Wu, K L Lu. J. Inorg. Organomet. Polym., 2007, 17(1):259~265.

    13. [13]

      [13] S W Lee, H J Kim, Y K Lee et al. Inorg. Chim. Acta, 2003, 353:151~158.

    14. [14]

      [14] E Y Choi, K Park, C M Yang et al. Chem. Eur. J., 2004, 10(21):5535~5540.

    15. [15]

      [15] P K Chen, S R Batten, Y Qi et al. Cryst. Growth Des., 2009, 9(6):2756~2761.

    16. [16]

      [16] L W Han, Y Gong, Z J Lin et al. Dalton Trans., 2012, 41(14):4146~4152.

    17. [17]

      [17] A Modrow, M Feyand, D Zargarani et al. Z. Anorg. Allg. Chem., 2012, 638(12~13):2138~2143.

    18. [18]

      [18] J Wang, Y Zhang, X Q Liu et al. Micropor. Mesopor. Mater., 2012, 159:100~104.

    19. [19]

      [19] X H Li, M Fang, P Cui et al. Z. Anorg. Allg. Chem., 2013, 639(3~4):626~632.

    20. [20]

      [20] X X Wang, Y J Ma, H H Li et al. Transit. Met. Chem., 2014, 40(1):99~108.

    21. [21]

      [21] (a) J L C Rowsell, A R Millward, K S Park et al. J. Am. Chem. Soc., 2004, 126(18):5666~5667. (b) M Eddaoudi, J Kim, N Rosi et al. Science, 2002, 295(5554):469~472.

    22. [22]

      [22] K O Kongshaug, H Fjellvåg. Sol. Stat. Sci., 2002, 4(4):443~447.

    23. [23]

      [23] M Dinca, J R Long. J. Am. Chem. Soc., 2005, 127(26):9376~9377.

    24. [24]

      [24] J Kim, B Chen, T M Reineke et al. J. Am. Chem. Soc., 2001, 123(34):8239~8247.

    25. [25]

      [25] N L Rosi, M Eddaoudi, J Kim et al. Angew. Chem., 2002, 114(2):284~287.

    26. [26]

      [26] K O Kongshaug, H Fjellvåg. J. Sol. Stat. Chem., 2004, 177(6):1852~1857.

    27. [27]

      [27] Z J Wang, L Qin, X Zhang et al. Syntheses, Cryst. Growth Des., 2015, 15(3):1303~1310.

    28. [28]

      [28] B Q Ma, K L Mulfort, J T Hupp. Inorg. Chem., 2005, 44(14):4912~4914.

    29. [29]

      [29] H Chun, D N Dybtsev, H Kim et al. Chem. Eur. J., 2005, 11(12):3521~3529.

    30. [30]

      [30] H Liu, Y G Zhao, Z J Zhang et al. Adv. Funct. Mater., 2011, 21(24):4754~4762.

    31. [31]

      [31] B L Chen, S Q Ma, F Zapata et al. Inorg. Chem., 2006, 45(15):5718~5720.

    32. [32]

      [32] K L Mulfort, J T Hupp. J. Am. Chem. Soc., 2007, 129(31):9604~9605.

    33. [33]

      [33] Z H Yan, W Wang, L Zhang et al. RSC Adv., 2015, 5(21):16190~16198.

    34. [34]

      [34] H S Wang, L Szeto, W T K Chan et al. Can. J. Chem., 2012, 90(1):100~107.

    35. [35]

      [35] Y Gong, T Wu, J H Li et al. Z. Anorg. Allg. Chem., 2012, 638(2):473~481.

    36. [36]

      [36] C J Chen, X P Ye, J Y Gao et al. Inorg. Chem. Commun., 2013, 29:4~10.

    37. [37]

      [37] K O Kongshaug, H Fjellvåg. J. Sol. Stat. Chem., 2002, 166(1):213~218.

    38. [38]

      [38] S A Sapchenko, D N Dybtsev, V P Fedin. Russ. Chem. Bull., 2014, 63(10):2363~2368.

    39. [39]

      [39] H Park, J F Britten, U Mueller et al. Chem. Mater., 2007, 19(6):1302~1308.

    40. [40]

      [40] H Y Liu, X F Meng, L H Zhang et al. Aust. J. Chem., 2015, 68:1299~1304.

    41. [41]

      [41] S B Aliev, D G Samsonenko, V P Fedin. Russ. J. Coord. Chem., 2013, 39(2):157~160.

    42. [42]

      [42] Y Zhang, Q F Liu, G Xing et al. J. Mol. Struct., 2015, 1085:121~125.

    43. [43]

      [43] K O Kongshaug, H Fjellvåg. Sol. Stat. Sci., 2003, 5(2):303~310.

    44. [44]

      [44] Y B Zhang, W X Zhang, F Y Feng et al. Angew. Chem., 2009, 121(29):5391~5394.

    45. [45]

      [45] B K Koo. Bull. Korean Chem. Soc., 2012, 33(7):2299~2304.

    46. [46]

      [46] J Ngoune, C D Nicolas, J Nenwa et al. Transit. Met. Chem., 2013, 38(1):21~29.

    47. [47]

      [47] P Kanoo, R Matsuda, M Higuchi et al. Chem. Mater., 2009, 21(24):5860~5866.

    48. [48]

      [48] 陈金喜, 刘保花, 孟伟伟. 无机化学学报, 2010, 26(5):885~890.

    49. [49]

      [49] S S P Dias, V André, J Kłak et al. Cryst. Growth Des., 2014, 14(7):3398~3407.

    50. [50]

      [50] H R Moon, N Kobayashi, M P Suh. Inorg. Chem., 2006, 45(21):8672~8676.

    51. [51]

      [51] 赵东元, 周陈陈, 田郁等. 化学学报, 2004, 62(9):901~904.

    52. [52]

      [52] B Liu, R Q Zou, R Q Zhong et al. Micropor. Mesopor. Mater., 2008, 111(1):470~477.

    53. [53]

      [53] Y Q Jiang, R Yu, Y L Bai et al. Transit. Met. Chem., 2008, 33(8):1019~1026.

    54. [54]

      [54] X L Wang, Y Q Chen, G C Liu et al. J. Sol. Stat. Chem., 2009, 182(9):2392~2401.

    55. [55]

      [55] S Geranmayeh, A Abbasi. J. Inorg. Organomet. Polym., 2013, 23(5):1138~1144.

    56. [56]

      [56] G C Liu, Y Q Chen, X L Wang et al. J. Sol. Stat. Chem., 2009, 182(3):566~573.

    57. [57]

      [57] R Yang, W C Xiao, K van Hecke et al. J. Inorg. Organomet. Polym., 2014, 25(4):772~779.

    58. [58]

      [58] M Bera, S K Jana, D Hazari et al. J. Inorg. Organomet. Polym., 2013, 23(2):325~332.

    59. [59]

      [59] C C Wang, G L Guo.Transit. Met. Chem., 2013, 38(4):455~462.

    60. [60]

      [60] D Sun, S Yuan, S S Liu et al. Z. Naturforsch. B:Chem. Sci., 2013, 68(4):357~361.

    61. [61]

      [61] S L Zheng, M L Tong, S D Tan et al. Organometallics, 2001, 20(25):5319~5325.

    62. [62]

      [62] C C Wang, H P Jing, P Wang. J. Mol. Stuct., 2014, 1074:92~99.

    63. [63]

      [63] J M Hao, B Y Yu, K van Hecke et al. CrystEngComm, 2015, 17(11):2279~2293.

    64. [64]

      [64] X X Wang, Y G Liu, K van Hecke et al. Z. Anorg. Allg. Chem., 2015, 641(5):903~910.

    65. [65]

      [65] R Haldar, T K Maji. J. Chem. Sci., 2011, 123(6):883~890.

    66. [66]

      [66] A Sonnauer, F Hoffmann, M Fr ba et al. Angew. Chem., 2009, 121(21):3849~3852.

    67. [67]

      [67] W J Zhang, H L Huang, D H Liu et al. Micropor. Mesopor. Mater., 2013, 171:118~124.

    68. [68]

      [68] T Loiseau, C Mellot-Draznieks, H Muguerra et al. C. R. Chim., 2005, 8(3):765~772.

    69. [69]

      [69] I Senkovska, F Hoffmann, M Fr ba et al. Micropor. Mesopor. Mater., 2009, 122(1):93~98.

    70. [70]

      [70] X J Jiang, J H Guo, M Du et al. Polyhedron, 2009, 28(17):3759~3768.

    71. [71]

      [71] D Hazari, S K Jana, M Fleck et al. J. Sol. Stat. Chem., 2014, 219:43~48.

    72. [72]

      [72] I Senkovska, S Kaskel. Eur. J. Inorg. Chem., 2006, (22):4564~4569.

    73. [73]

      [73] I Senkovska, J Fritsch, S Kaskel. Eur. J. Inorg. Chem., 2007, (35):5475~5479.

    74. [74]

      [74] A Deluzet, W Maudez, C Daiguebonne et al. Cryst. Growth Des., 2003, 3(4):475~479.

    75. [75]

      [75] F A Almeida Paz. Acta Crystallogr. Sect. E:Struct. Rep. Online, 2007, 64(1):m140~m141.

    76. [76]

      [76] F A Almeida Paz, J Klinowski. Acta Crystallogr. Sect. E:Struct. Rep. Online, 2008, 64(2):m336~m337.

    77. [77]

      [77] D W Min, S W Lee. Bull. Korean Chem. Soc., 2002, 23(7):948~952.

    78. [78]

      [78] X J Zheng, C Y Sun, S Z Lu et al. Eur. J. Inorg. Chem., 2004(16):3262~3268.

    79. [79]

      [79] F A Almeida Paz, J Klinowski. Chem. Commun., 2003, (13):1484~1485.

    80. [80]

      [80] I Rodrigues, I Mihalcea, C Volkringer et al. Inorg. Chem., 2011, 51(1):483~490.

    81. [81]

      [81] Z Wang, C M Jin, T Shao et al. Inorg. Chem. Commun., 2002, 5(9):642~648.

    82. [82]

      [82] Y H Liu, P H Chien. CrystEngComm, 2014, 16(37):8852~8862.

    83. [83]

      [83] R Łyszczek, Z Rzaczyńska, A Kula et al. J. Anal. Appl. Pyrol., 2011, 92(2):347~354.

    84. [84]

      [84] R Łyszczek, A Lipke. Micropor. Mesopor. Mater., 2013, 168:81~91.

    85. [85]

      [85] O Alduhaish, B Li, V Nesterov et al. Inorg. Chem. Commun., 2014, 45:89~92.

    86. [86]

      [86] Y B Lu, S Jin, Z G Zhou et al. Inorg. Chem. Commun., 2014, 48:73~76.

    87. [87]

      [87] X H Li, M Fang, B Zhao. Sci. China, Ser. B:Chem., 2009, 52(9):1456~1462.

    88. [88]

      [88] M Fang, X Li, P Cui et al. J. Sol. Stat. Chem., 2015, 223:138~143.

    89. [89]

      [89] X J Zheng, Z M Wang, S Gao et al. Eur. J. Inorg. Chem., 2004, (14):2968~2973.

    90. [90]

      [90] D C Hou, G Y Jiang, Z Zhao et al. Inorg. Chem. Commun., 2013, 29:148~150.

    91. [91]

      [91] X B Qian, Q Yue, Q X Jia et al. J. Chem. Crystallogr., 2011, 41(5):751~756.

    92. [92]

      [92] Q Y Liu, W F Wang, Y L Wang et al. Inorg. Chem., 2012, 51(4):2381~2392.

    93. [93]

      [93] N Zhang, Q Y Liu, Y L Wang et al. Inorg. Chem. Commun., 2012, 20:299~302.

    94. [94]

      [94] S N Zhao, X Z Song, M Zhu et al. Dalton T., 2015, 44(3):948~954.

    95. [95]

      [95] L D Tran, J I Feldblyum, A G Wong-Foy et al. Langmuir, 2015, 31(7):2211~2217.

    96. [96]

      [96] B Assfour, T Assaad, A Odeh. Chem. Phys. Lett., 2014, 610:45~49.

  • 加载中
    1. [1]

      Xuyu WANGXinran XIEDengke CAO . Photoreaction characteristics and luminescence modulation in phosphine-anthracene-based Au(Ⅰ) and Ir(Ⅲ) complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1513-1522. doi: 10.11862/CJIC.20250113

    2. [2]

      Xiaotong LUPan ZHANGZijie ZHAOLei HUANGHongwei ZUOLili LIANG . Antitumor and antibacterial activities of pyridyl Schiff base indium and dysprosium complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1523-1532. doi: 10.11862/CJIC.20250073

    3. [3]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    4. [4]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    5. [5]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    6. [6]

      Wenke ZHENGCe LIUWei CHENHongshan KEFanlong ZENGYibo LEIAnyang LIWenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095

    7. [7]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    8. [8]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    9. [9]

      Jinrong Bao Jinglin Zhang Wenxian Li Xiaowei Zhu . 苯甲酸稀土配合物的制备及性能表征——基于应用化学专业人才培养的综合化学实验案例分析. University Chemistry, 2025, 40(8): 218-224. doi: 10.12461/PKU.DXHX202409142

    10. [10]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    11. [11]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    12. [12]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    13. [13]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    14. [14]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    15. [15]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    16. [16]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    17. [17]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    18. [18]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    19. [19]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    20. [20]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

Metrics
  • PDF Downloads(0)
  • Abstract views(493)
  • HTML views(83)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return