Citation: Li Qianggen, Mao Shuang, Cai Wanfei, Zheng Yan, Liu Liuxie. Theoretical Studies on the Gas-Phase SNAr Reactions of Halobenzenes and Halide Anions[J]. Chemistry, ;2016, 79(5): 418-424. shu

Theoretical Studies on the Gas-Phase SNAr Reactions of Halobenzenes and Halide Anions

  • Received Date: 12 August 2015
    Available Online: 29 October 2015

    Fund Project:

  • The gas-phase SNAr reactions of halobenzenes and halide anions (ArY + X-=ArX + Y-, X, Y=F, Cl, Br and I) were investigated by the B3LYP and MP2 methods with the 6-311+G** basis set. Calculated results indicate that the SNAr reactions of halobenzenes and halide anions in the gas-phase proceed via a concerted mechanism, while a two-step addition-elimination pathway is founded with the formation of a stable σ-complex for X=Y=F. In view of thermodynamics and kinetics, the gas-phase SNAr reactions of halobenzenes attacked by fluoride ion are easy to proceed (overall barrier ΔGb=9.0~17.3 kJ/mol), whereas it would be hardly possible to observe the reactions for X=Cl-, Br- and I- due to the higher overall barriers (ΔGb=91.3~202.5 kJ/mol). In addition, the reactivities of the titled reactions can be analyzed by proton affinity (PA), the highest occupied orbital energy (EHOMO) and Mulliken electronegativity (χ) of the halide as well as the Wiberg bond order (BO) and NPA charges (Q). The break of the C-Y bond in transition state (TS) is mainly responsible for the reaction barriers, and the nucleophilicity of the halide anion is mainly dominated by EHOMO, while the leaving-group ability of halogen anion is governed by PA or χ.
  • 加载中
    1. [1]

      [1] M B Smith, J March. Advanced Organic Chemistry: Reactions, Mechanisms, and Structure. 6th ed, John Wiley, New York, 2007.

    2. [2]

      [2] F Terrier. The SNAr Reactions: Mechanistic Aspects, in Modern Nucleophilic Aromatic Substitution, Ch.1. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2013.

    3. [3]

      [3] R D Chambers. Fluorine in Organic Chemistry. Blackwell, Oxford, 2004.

    4. [4]

      [4] F Terrier. Chem. Rev., 1982, 82(2): 77~152.

    5. [5]

      [5] F Terrier. Nucleophilic Aromatic Displacement: The influence of the nitro group. VCH Publishers, New York, 1991.

    6. [6]

      [6] E Buncel, J M Dust, F Terrier. Chem. Rev., 1995, 95(7): 2261~2280.

    7. [7]

      [7] M Makosza. Russ. Chem. Bull., 1996, 45(3):491~504

    8. [8]

      [8] M Makosza. Pol. J. Chem., 1992, 66:3~23.

    9. [9]

      [9] J F Bunnett, R E Zahler. Chem. Rev., 1951, 49(2):273~412.

    10. [10]

      [10] A Hunter, M Renfrew, J A Taylor et al. J. Chem. Soc., Perkin Transca. 2, 1993, 10:1703~1074.

    11. [11]

      [11] I Fernandez, G Frenking, E Uggerud. J. Org. Chem., 2010, 75(9): 2971~2980.

    12. [12]

      [12] M N Glukhovtsev, D R Bach, S Laiter. J. Org. Chem., 1997, 62(12): 4036~4046.

    13. [13]

      [13] B Y Simkin, E B Gluz, M N Glukhovtsev et al. J. Mol. Struct. (THEOCHEM), 1993, 284(1~2):123~137.

    14. [14]

      [14] T Giroldo, L A Xavier, J M Riveros. Angew. Chem. Int. Ed., 2004, 43(27): 3588~3590.

    15. [15]

      [15] H Sun, S G DiMagno. Angew. Chem. Int. Ed., 2006, 45(17): 2720~2725.

    16. [16]

      [16] A D Becke. J. Chem. Phys., 1993, 98(7):5648~5652.

    17. [17]

      [17] C Lee, W Yang, R G Parr. Phys. Rev. B, 1988, 37(2): 785~789.

    18. [18]

      [18] B Miehlich, A Savin, H Stoll et al. Chem. Phys. Lett., 1989, 157(3): 200~206.

    19. [19]

      [19] J R Pliego Jr, D Piló-Veloso. Phys. Chem. Chem. Phys., 2008, 10(8): 1118~1124.

    20. [20]

      [20] M V F Cid, W Buijs, G J Witkamp. Ind. Eng. Chem. Res., 2007, 6(12): 3941~3944.

    21. [21]

      [21] S I Gorelsky, D Lapointe, K Fagnou. J. Am. Chem. Soc., 2008, 130(33): 10848~10849.

    22. [22]

      [22] M Imoto, Y Matsui, M Takeda et al. J. Org. Chem., 2011, 76(15): 6356~6361.

    23. [23]

      [23] R O Toledo, J G Santos, P Ríos et al. J. Phys. Chem. B, 2013, 117(19):5908~5915.

    24. [24]

      [24] R O Toledo, R Contreras, R A Tapiab et al. Org. Biomol. Chem., 2013, 11(14):2302~2309.

    25. [25]

      [25] W R Wadt, P J Hay. J. Chem. Phys., 1985, 82(1): 284~298.

    26. [26]

      [26] A E Reed, R B Weinstock, F Weinhold. J. Chem. Phys., 1985, 83(2): 735~746;

    27. [27]

      [27] A E Reed, L A Curtiss, F Weinhold. Chem. Rev., 1988, 88(6): 899~926.

    28. [28]

      [28] M J Frisch, G W Trucks, H B Schlegel et al. Gaussian 09, Revision A02, Gaussian, Inc., Wallingford C. T, 2009.

    29. [29]

      [29] S S Shaik, H B Schlegel, S Wolfe. Theoretical Aspects of Physical Organic Chemistry. The SN2 Mechanism; Wiley: New York, 1992, pp 181~188.

    30. [30]

      [30] R S Mulliken. J. Chem. Phys., 1934, 2(11): 782~793.

    31. [31]

      [31] P K Chattaraj, U Sarkar, D R Roy. Chem. Rev., 2006, 106(6): 2065~2091.

    32. [32]

      [32] R Ormazábal-Toledo, R Contreras. Adv. Chem., doi:10.1155/2014/541547

    33. [33]

      [33] R Ormazábal-Toledo, P R Campodónico, R Contreras. Org. Lett., 2011, 13(4):822~824.

    34. [34]

      [33] F Weinhold, C R Landis. Valency and Bonding-A Natural Bond Orbital Donor-Acceptor Perspective. Cambridge University Press: Cambridge, U.K., 2005.

    35. [35]

      [34] M N Glukhovtsev, A Pross, L Radom. J. Am. Chem. Soc., 1995, 117(7):2024~2032.

    36. [36]

      [35] L C Allen. J. Am. Chem. Soc., 1989, 111(25): 9003~9014.

  • 加载中
    1. [1]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    2. [2]

      Bolin Sun Jie Chen Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032

    3. [3]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    4. [4]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    5. [5]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    6. [6]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    7. [7]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    8. [8]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    9. [9]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    10. [10]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    11. [11]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    12. [12]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    13. [13]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    14. [14]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    15. [15]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    16. [16]

      Lancanghong Chen Xingtai Yu Tianlei Zhao Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089

    17. [17]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    18. [18]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    19. [19]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    20. [20]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

Metrics
  • PDF Downloads(0)
  • Abstract views(808)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return