Citation: Xu Chenghao, Wang Li, He Xiangming, Shang Yuming. First-Principles Calculations of Electronic Structure of LiFePO4 with Vacancy and Impurity[J]. Chemistry, ;2016, 79(5): 412-417. shu

First-Principles Calculations of Electronic Structure of LiFePO4 with Vacancy and Impurity

  • Corresponding author: He Xiangming, 
  • Received Date: 14 July 2015
    Available Online: 13 November 2015

    Fund Project:

  • The electronic structures of LiFePO4 crystal with various vacancy defects and anion doping were studied by the first-principles method based on DFT. To providing theoretical basis for the studies of LiFePO4 modification experiments, the effects of defects on the electrochemical performance were illustrated by the analysis of the band structure, the density of states and the population distribution. The results showed that Li, Fe and O-site vacancy defects almost have no effect on the band structure of LiFePO4, no new conduction band appears in the band gap though the forbidden band width decreases, and the rise in total energy indicates the instability of structure; P-site vacancy defects introduce two new conduction bands in the band gap, the decrease in forbidden band width is obviously in favor of the electronic conductivity, the increased total energy results in the instability of structure, however, it may be work to get high performance LiFePO4, due to the small amount of impurity phase produced during annealing; F-doping defects show significant effect on the band structure of LiFePO4 which makes the transform from n-type semiconductor into p-type semiconductor, indicating of tremendous improvement in the electronic conductivity. Besides, the improvement in the stability of structure can also be deduced according to the declined total energy.
  • 加载中
    1. [1]

      [1] G Ceder, Y M Chiang, D R Sadoway et al. Nature, 1998, 392: 694~696.

    2. [2]

      [2] 张培新,陈建华,魏群 等.掺杂材料分子模拟与计算, 北京:科学出版社, 2012.

    3. [3]

      [3] S Q Shi, L Liu, C Y Ouyang et al. Phys. Rev. B, 2003, 68(19): 195108~195115.

    4. [4]

      [4] C Y Ouyang, S Q Shi, Z X Wang et al. Phys. Rev. B, 2004, 69(10): 104303~104308.

    5. [5]

      [5] C Y Ouyang, S Q Shi, Z X Wang et al. J. Phys.-Condens. Mat., 2004, 16(13): 2265~2272.

    6. [6]

      [6] S Q Shi, C Y Ouyang, Z Xiong et al. Phys. Rev. B, 2005, 71(14): 144404-1-5.

    7. [7]

      [7] J Jiang, C Y Ouyang, H Li et al. Solid State Commun., 2007, 143(3): 144~151.

    8. [8]

      [8] L Wang, F Zhou, Y S Meng et al. Phys. Rev. B, 2007, 76(16): 165354-1-5.

    9. [9]

      [9] Z J Liu, X J Huang, D S Wang. Solid State Commun., 2008, 147(11~12): 505~513.

    10. [10]

      [10] X F Ouyang, M L Lei, S Q Shi. J. Alloys Compd., 2009, 476(1~2): 462~465.

    11. [11]

      [11] S Q Shi, H Zhang, X Z Ke et al. Phys. Lett. A, 2009, 373(44): 4096~4095.

    12. [12]

      [12] J Xu, G Chen. Phys. B, 2010, 405(3): 803~809.

    13. [13]

      [13] Z J Liu, X J Huang. Solid State Ionics, 2010, 181(19~20): 907~919.

    14. [14]

      [14] X G Xin, X Chen, J J Zhou et al. Acta Phys. Sin., 2011, 60(1): 028201.

    15. [15]

      [15] J Q Dou, X Y Kang, T Wumair et al. Acta Phys. Sin., 2012, 61(8): 087101.

    16. [16]

      [16] O V Yakubovich, M A Simonov, N V Belov. Soviet Phys. Doklady, 1977, 22: 347~350.

    17. [17]

      [17] A Yamada, S C Chung, K Hinokuma. J. Electrochem. Soc., 2001, 148(3):A224~A229.

  • 加载中
    1. [1]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    2. [2]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    3. [3]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    4. [4]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    5. [5]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    6. [6]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    7. [7]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    8. [8]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    9. [9]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    10. [10]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    11. [11]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    12. [12]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    13. [13]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    14. [14]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    15. [15]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    16. [16]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    17. [17]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    18. [18]

      Shasha SUNWeichun HUANGMengke WANG . Research progress of interface regulation strategies and applications of two‑dimensional MXenes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1465-1482. doi: 10.11862/CJIC.20240430

    19. [19]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    20. [20]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

Metrics
  • PDF Downloads(1)
  • Abstract views(312)
  • HTML views(49)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return