Citation: Liu Shuang, Liu Lantao. Recent Advances in CO2 Adsorption and Separation of MOFs Decorated with Polar Functional Groups[J]. Chemistry, ;2016, 79(5): 403-406,411. shu

Recent Advances in CO2 Adsorption and Separation of MOFs Decorated with Polar Functional Groups

  • Corresponding author: Liu Lantao, 
  • Received Date: 23 September 2015
    Available Online: 17 November 2015

    Fund Project:

  • Based on the urgent practical needs for removal and recovery of CO2 from the exhaust gas, it is one of research hotspots to construct functional MOFs with water resistance, high capacity and separation for CO2 adsorption. In this paper, the high pressure CO2 adsorption of MOFs materials is briefly summarized, and taking into account the actual industrial application conditions, recent progress in low pressure CO2 adsorption and separation by MOFs which have been decorated with nitrogen or heteroatom-containing polar functional groups is highlighted.
  • 加载中
    1. [1]

      [1] R Banerjee, A Phan, B Wang et al. Science, 2008, 319 (5865): 939~943.

    2. [2]

      [2] X Shi, G S Zhu, S L Qiu et al. Angew. Chem. Int. Ed., 2004, 43 (47): 6482~6485.

    3. [3]

      [3] H L Guo, G S Zhu, I J Hewitt et al. J.Am.Chem. Soc., 2009, 131 (5): 1646~1647.

    4. [4]

      [4] S C Xiang, X T Wu, J J Zhang et al. J.Am.Chem. Soc., 2005, 127 (47): 16352~16353.

    5. [5]

      [5] X Si, C Jiao, F Li et al. Energy Environ. Sci., 2011, 4 (11): 4522~4527.

    6. [6]

      [6] Y Peng, Y Li, Y Ban et al. Science, 2014, 346 (6215): 1356~1359.

    7. [7]

      [7] S S Chen, M Chen, S Takamizawa et al. Chem. Commun., 2011, 47 (2): 752~754.

    8. [8]

      [8] B Zheng, J Bai, J Duan et al. J.Am.Chem. Soc., 2011, 133 (4): 748~751.

    9. [9]

      [9] E Q Gao, Y F Yue, S Q Bai et al. J.Am.Chem. Soc., 2004, 126 (5): 1419~1429.

    10. [10]

      [10] J P Zhang, X M Chen. J.Am.Chem. Soc., 2008, 130 (18): 6010~6017.

    11. [11]

      [11] P Cui, Y G Ma, H H Li et al. J.Am.Chem. Soc., 2012, 134 (46): 18892~18895.

    12. [12]

      [12] Y Liu, W M Xuan, Y Cui. Adv. Mater., 2010, 22 (37): 4112~4135.

    13. [13]

      [13] G Q Kong, S Ou, C Zou et al. J.Am.Chem. Soc., 2012, 134 (48): 19851~19857.

    14. [14]

      [14] A R Millward, O M Yaghi. J.Am.Chem. Soc., 2005, 127 (51): 17998~17999.

    15. [15]

      [15] K Sumida, D L Rogow, J A Mason et al. Chem. Rev., 2012, 112 (2): 724~781.

    16. [16]

      [16] Z Zhang, Z Z Yao, S Xiang et al. Energy Environ. Sci., 2014, 7 (9): 2868~2899.

    17. [17]

      [17] H Furukawa, N Ko, Y B Go et al. Science, 2010, 329 (5990): 424~428.

    18. [18]

      [18] J An, S J Geib, N L Rosi. J.Am.Chem. Soc., 2009, 132 (1): 38~39.

    19. [19]

      [19] T M McDonald, D M D'Alessandro, R Krishna et al. Chem. Sci., 2011, 2 (10): 2022~2028.

    20. [20]

      [20] T M McDonald, W R Lee, J A Mason et al. J.Am.Chem. Soc., 2012, 134 (16): 7056~7065.

    21. [21]

      [21] T M McDonald, J A Mason, X Q Kong et al. Nature, 2015, 519 (7543): 303~308.

    22. [22]

      [22] W R Lee, H Jo, L M Yang et al. Chem. Sci. 2015, 6 (7): 3697~3705.

    23. [23]

      [23] J R Li, J Yu, W Lu et al. Nat. Commun., 2013, 4: 1538.

    24. [24]

      [24] K R Roshan, B M Kim, A C Kathalikkattil et al. Chem. Commun., 2014, 50 (89): 13664~13667.

    25. [25]

      [25] C Petit, T J Bandosz. Adv. Mater., 2009, 21 (46): 4753~4757.

    26. [26]

      [26] S Liu, L Sun, F Xu et al. Energy Environ. Sci., 2013, 6 (3): 818~823.

    27. [27]

      [27] J G Duan, Z Yang, J F Bai et al. Chem. Commun., 2012, 48 (25): 3058~3060.

    28. [28]

      [28] B S Zheng, Z Yang, J F Bai et al. Chem. Commun., 2012, 48(56): 7025~7027.

    29. [29]

      [29] P Q Liao, D D Zhou, A X Zhu et al. J.Am.Chem. Soc., 2012, 134(42): 17380~17383.

    30. [30]

      [30] B Y Li, Z J Zhang, Y Li et al. Angew. Chem. Int. Ed., 2012, 51(6): 1412~1415.

    31. [31]

      [31] H Liu, Y G Zhao, Z J Zhang et al. Adv. Func. Mater., 2011, 21(24): 4754~4762.

    32. [32]

      [32] B Z Yuan, D Y Ma, X Wang et al. Chem. Commun., 2012, 48(8): 1135~1137.

    33. [33]

      [33] Y Ling, M L Deng, Z X Chen et al. Chem. Commun., 2013, 49(1): 78~80.

    34. [34]

      [34] X X Lv, L J Li, S F Tang et al. Chem. Commun., 2014, 50(52): 6886~6889.

    35. [35]

      [35] C L Song, Y B He, B Li et al. Chem. Commun., 2014, 50(81): 12105~12108.

  • 加载中
    1. [1]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    2. [2]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    3. [3]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    4. [4]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    5. [5]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    6. [6]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    7. [7]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    8. [8]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    9. [9]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    10. [10]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    11. [11]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    12. [12]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    13. [13]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    14. [14]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    15. [15]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    16. [16]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    17. [17]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    18. [18]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    19. [19]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    20. [20]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

Metrics
  • PDF Downloads(0)
  • Abstract views(326)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return