Citation: Zhang Meiqi, Zhao Yanxia, He Shenggui. Reactions of Noble Metal Species with Methane in Gas-Phase[J]. Chemistry, ;2016, 79(5): 395-402. shu

Reactions of Noble Metal Species with Methane in Gas-Phase

  • Corresponding author: He Shenggui, 
  • Received Date: 6 November 2015
    Available Online: 19 November 2015

    Fund Project:

  • Noble metals have been identified to exhibit excellent performance in methane chemistry. Gas phase study of chemical reactions between noble metal species and methane permits to uncover the active sites and elementary reaction mechanisms involved in condensed-phase catalytic reactions at a strictly molecular level. In this review, we summarize the recent progress in activation and transformation of methane by noble metal species including single atoms, atomic ions, cluster ions, hydrides, halides, oxides, metal-methyl complexes, and heteronuclear clusters. The mechanistic difference of methane activation by different noble metal systems is also discussed in detail.
  • 加载中
    1. [1]

      [1] A Holmen. Catal. Today, 2009, 142(1~2): 2~8.

    2. [2]

      [2] M C Alvarez-Galvan, N Mota, M Oieda et al. Catal. Today, 2011, 171(1): 15~23.

    3. [3]

      [3] R Horn, R Schlögl. Catal. Lett., 2015, 145(1): 23~39.

    4. [4]

      [4] X G Guo, G Z Fang, G Li et al. Science, 2014, 344(6184): 616~619.

    5. [5]

      [5] R H Crabtree. Chem. Rev., 1995, 95(4): 987~1007.

    6. [6]

      [6] H Schwarz. Angew. Chem. Int. Ed., 2011, 50(43): 10096~10115.

    7. [7]

      [7] A Caballero, P J Pérez. Chem. Sov. Rev., 2013, 42: 8809~8820.

    8. [8]

      [8] J K Hoyano, A D McMaster, W A G Graham. J. Am. Chem. Soc., 1983, 105(24): 7190~7191.

    9. [9]

      [9] M J Wax, J M Stryker, J M Buchanan et al. J. Am. Chem. Soc.,1984, 106(4): 1121~1122.

    10. [10]

      [10] B A Arndsten, R G Bergman. Science, 1995, 270(5244): 1970~1973.

    11. [11]

      [11] W H Bernskoetter, S K Hanson, S K Busak et al. J. Am. Chem. Soc., 2009, 131(24): 8603~8613.

    12. [12]

      [12] W H Bernskoetter, C K Schauer, K I Goldberg et al. Science, 2009, 326(5952): 553~556.

    13. [13]

      [13] A E Sherry, B B Wayland. J. Am. Chem. Soc., 1990, 112(3): 1259~1261.

    14. [14]

      [14] M Lin, A Sen. Nature, 1994, 368(6472): 613~615.

    15. [15]

      [15] R A Periana, D J Taube, S Gamble et al. Science, 1998, 280(5363): 560~563.

    16. [16]

      [16] E Gretz, T F Oliver, A Sen. J. Am. Chem. Soc., 1987, 109(26): 8109~8111.

    17. [17]

      [17] M Muehlhofer, T Strassner, W A Herrmann. Angew. Chem. Int. Ed., 2002, 41(10): 1745~1747.

    18. [18]

      [18] R A Periana, O Mironov, D Taube et al. Science, 2003, 301(5634): 814~818.

    19. [19]

      [19] A Caballero, E Despagnet-Ayoub, M M Díaz-Requejo et al. Science, 2011, 332(6031): 835~838.

    20. [20]

      [20] C Jones, D Taube, V R Ziatdinov et al. Angew. Chem. Int. Ed., 2004, 43(35): 4626~4629.

    21. [21]

      [21] T Y Chang, Y Tanaka, R Ishikawa et al. Nano Lett., 2014, 14(1): 134~138.

    22. [22]

      [22] K K Irikura, J L Beauchamp. J. Am. Chem. Soc., 1991, 95(21): 8344~8351.

    23. [23]

      [23] H Schwarz. Angew. Chem. Int. Ed., 2003, 42(37): 4442~4454.

    24. [24]

      [24] T M Bernhardt. Int. J. Mass Spectrom., 2005, 243(1): 1~29.

    25. [25]

      [25] P B Armentrout. Int. J. Mass Spectrom., 2003, 227(3): 289~302.

    26. [26]

      [26] K Koszinowski, D Schröder, H Schwarz. J. Am. Chem. Soc., 2003, 125(13): 3676~3677.

    27. [27]

      [27] J Roithová, D Schröder. Chem. Rev., 2010, 110(2): 1170~1211.

    28. [28]

      [28] M Armélin, M Schlangen, H Schwarz. Chem. Eur. J., 2008, 14(17): 5229~5236

    29. [29]

      [29] K K Irikura, J L Beauchamp. J. Am. Chem. Soc., 1989, 111(1): 75~85.

    30. [30]

      [30] K K Irikura, J L Beauchamp. J. Am. Chem. Soc., 1991, 113(7): 2769~2770.

    31. [31]

      [31] P B Armentrout, L Parke, C Hinton et al. Chem. Plus. Chem., 2013, 78(9): 1157~1173.

    32. [32]

      [32] H G Cho, L Andrews. Organometallics, 2008, 27(8): 1786~1796.

    33. [33]

      [33] G J Wang, M H Chen, M F Zhou. Chem. Phys. Lett., 2005, 412(1~3): 46~49.

    34. [34]

      [34] G Albert, C Berg, M Beyer et al. Chem. Phys. Lett., 1997, 268(3~4): 235~241.

    35. [35]

      [35] K Koszinowski, M Schlangen, D Schröder et al. Int. J. Mass Spectrom., 2004, 237(1): 19~23.

    36. [36]

      [36] F X Li, X G Zhang, P B Armentrout. Int. J. Mass Spectrom., 2006, 255~256(255): 279~300.

    37. [37]

      [37] V J F Lapoutre, B Redlich, A F G van der Meer et al. J. Phys. Chem. A, 2013, 117(20): 4115~4126.

    38. [38]

      [38] S M Lang, T M Bernhardt. Faraday Discuss., 2011, 152: 337~351.

    39. [39]

      [39] S M Lang, A Frank, T M Bernhardt. J. Phys. Chem. C, 2013, 117(19): 9791~9800.

    40. [40]

      [40] S M Lang, A Frank, T M Bernhardt. Int. J. Mass Spectrom., 2013, 354~355: 365~371.

    41. [41]

      [41] S M Lang, A Frank, T M Bernhardt. Catal. Sci. Technol., 2013, 3(11): 2926~2933.

    42. [42]

      [42] M Schlangen, H Schwarz. Angew. Chem. Int. Ed., 2007, 46(29): 5614~5617.

    43. [43]

      [43] R Wesendrup, D Schröder, H Schwarz. Angew. Chem. Int. Ed., 1994, 33(11): 1174~1176.

    44. [44]

      [44] C Heinemann, R Wesendrup, H Schwarz. Chem. Phys. Lett., 1995, 239(1~3): 75~83.

    45. [45]

      [45] D Schröder, H Schwarz. Can. J. Chem., 2005, 83(11):1936~1940.

    46. [46]

      [46] J J Carroll, J C Weisshaar. J. Phys. Chem., 1995, 99(39): 14388~14396.

    47. [47]

      [47] H G Cho, L Andrews. J. Phys. Chem. A, 2008, 112(48): 12293~12295.

    48. [48]

      [48] U Achatz, C Berg, S Joos et al. Chem. Phys. Lett., 2000, 320(1~2): 53~58.

    49. [49]

      [49] C Adlhart, E Uggerud. Chem. Commun., 2006, (24):2581~2582.

    50. [50]

      [50] D J Harding, C Kerpal, G Meijer et al. Angew. Chem. Int. Ed., 2012, 51(3): 817~819.

    51. [51]

      [51] D J Trevor, D M Cox, A Kaldor. J. Am. Chem. Soc., 1990, 112: 3742~3749.

    52. [52]

      [52] K Koszinowski, D Schröder, H Schwarz. Organometallics, 2003, 22(19): 3809~3819.

    53. [53]

      [53] M Brönstrup, D Schröder, I Kretzschmar et al. J. Am. Chem. Soc., 2001, 123(1): 142~147.

    54. [54]

      [54] Y X Zhao, Z Y Li, Z Yuan et al. Angew. Chem. Int. Ed., 2014, 53(36): 9482~9486.

    55. [55]

      [55] W E Billups, M M Konarski, R H Hauge et al. J. Am. Chem. Soc., 1980, 102(24): 7393~7394.

    56. [56]

      [56] S M Lang, T M Bernhardt, R N Barnett et al. Angew. Chem. Int. Ed., 2010, 49(5): 980~983.

    57. [57]

      [57] S M Lang, T M Bernhardt, R N Barnett et al. J. Phys. Chem. C, 2011, 115(14): 6788~6795.

    58. [58]

      [58] X N Wu, X N Li, X L Ding et al. Angew. Chem. Int. Ed., 2013, 52(9): 2444~2448.

    59. [59]

      [59] L N Wang, Zh X Zhou, X N Li et al. Chem. Eur. J. 2015, 21(18): 6957~6961.

    60. [60]

      [60] M Pavlov, M R A Blomberg, P E M Siegbahn et al. J. Phys. Chem. A, 1997, 101(8): 1567~1579.

    61. [61]

      [61] F Y Liu, X G Zhang, P B Armentrout. Phys. Chem. Chem. Phys., 2005, 7(5): 1054~1064.

    62. [62]

      [62] X H Zhang, H Schwarz. Chem. Eur. J., 2010, 16(20): 5882~5888.

    63. [63]

      [63] C K Siu, S J Reitmeier, I Balteanu et al. Eur. Phys. J. D, 2007, 43(1~3): 189~192.

    64. [64]

      [64] L L Lv, Y C Wang, Y Z Jin. Theor. Chem. Acc., 2011, 130(1): 15~25.

    65. [65]

      [65] H Schwarz. Isr. J. Chem., 2014, 54(10): 1413~1431.

    66. [66]

      [66] M Che, A Tench. J. Adv. Catal., 1983, 32: 1~148.

    67. [67]

      [67] X L Ding, X N Wu, Y X Zhao et al. Acc. Chem. Res., 2012, 45(3): 382~390.

    68. [68]

      [68] P Pyykkö. Angew. Chem. Int. Ed., 2004, 43(34): 4412~4456.

    69. [69]

      [69] M Citir, R B Metz, L Belau et al. J. Phys. Chem. A, 2008, 112(39):9584~9590.

    70. [70]

      [70] M C McCarthy, R W Field, R Engleman et al. J. Mol. Spectroc., 1993, 158(1):208~236.

  • 加载中
    1. [1]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    2. [2]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    3. [3]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    4. [4]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    5. [5]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    6. [6]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    7. [7]

      Bolin Sun Jie Chen Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032

    8. [8]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    9. [9]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    10. [10]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    11. [11]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    12. [12]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    13. [13]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    14. [14]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    15. [15]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    16. [16]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    17. [17]

      Lancanghong Chen Xingtai Yu Tianlei Zhao Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089

    18. [18]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    19. [19]

      Lubing QinFang SunMeiyin LiHao FanLikai WangQing TangChundong WangZhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008

    20. [20]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

Metrics
  • PDF Downloads(9)
  • Abstract views(552)
  • HTML views(87)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return