Citation:
Zhang Meiqi, Zhao Yanxia, He Shenggui. Reactions of Noble Metal Species with Methane in Gas-Phase[J]. Chemistry,
;2016, 79(5): 395-402.
-
Noble metals have been identified to exhibit excellent performance in methane chemistry. Gas phase study of chemical reactions between noble metal species and methane permits to uncover the active sites and elementary reaction mechanisms involved in condensed-phase catalytic reactions at a strictly molecular level. In this review, we summarize the recent progress in activation and transformation of methane by noble metal species including single atoms, atomic ions, cluster ions, hydrides, halides, oxides, metal-methyl complexes, and heteronuclear clusters. The mechanistic difference of methane activation by different noble metal systems is also discussed in detail.
-
Keywords:
- Noble Metals,
- Methane,
- Atomic clusters,
- Reaction mechanisms
-
-
-
[1]
[1] A Holmen. Catal. Today, 2009, 142(1~2): 2~8.
-
[2]
[2] M C Alvarez-Galvan, N Mota, M Oieda et al. Catal. Today, 2011, 171(1): 15~23.
-
[3]
[3] R Horn, R Schlögl. Catal. Lett., 2015, 145(1): 23~39.
-
[4]
[4] X G Guo, G Z Fang, G Li et al. Science, 2014, 344(6184): 616~619.
-
[5]
[5] R H Crabtree. Chem. Rev., 1995, 95(4): 987~1007.
-
[6]
[6] H Schwarz. Angew. Chem. Int. Ed., 2011, 50(43): 10096~10115.
-
[7]
[7] A Caballero, P J Pérez. Chem. Sov. Rev., 2013, 42: 8809~8820.
-
[8]
[8] J K Hoyano, A D McMaster, W A G Graham. J. Am. Chem. Soc., 1983, 105(24): 7190~7191.
-
[9]
[9] M J Wax, J M Stryker, J M Buchanan et al. J. Am. Chem. Soc.,1984, 106(4): 1121~1122.
-
[10]
[10] B A Arndsten, R G Bergman. Science, 1995, 270(5244): 1970~1973.
-
[11]
[11] W H Bernskoetter, S K Hanson, S K Busak et al. J. Am. Chem. Soc., 2009, 131(24): 8603~8613.
-
[12]
[12] W H Bernskoetter, C K Schauer, K I Goldberg et al. Science, 2009, 326(5952): 553~556.
-
[13]
[13] A E Sherry, B B Wayland. J. Am. Chem. Soc., 1990, 112(3): 1259~1261.
-
[14]
[14] M Lin, A Sen. Nature, 1994, 368(6472): 613~615.
-
[15]
[15] R A Periana, D J Taube, S Gamble et al. Science, 1998, 280(5363): 560~563.
-
[16]
[16] E Gretz, T F Oliver, A Sen. J. Am. Chem. Soc., 1987, 109(26): 8109~8111.
-
[17]
[17] M Muehlhofer, T Strassner, W A Herrmann. Angew. Chem. Int. Ed., 2002, 41(10): 1745~1747.
-
[18]
[18] R A Periana, O Mironov, D Taube et al. Science, 2003, 301(5634): 814~818.
-
[19]
[19] A Caballero, E Despagnet-Ayoub, M M Díaz-Requejo et al. Science, 2011, 332(6031): 835~838.
-
[20]
[20] C Jones, D Taube, V R Ziatdinov et al. Angew. Chem. Int. Ed., 2004, 43(35): 4626~4629.
-
[21]
[21] T Y Chang, Y Tanaka, R Ishikawa et al. Nano Lett., 2014, 14(1): 134~138.
-
[22]
[22] K K Irikura, J L Beauchamp. J. Am. Chem. Soc., 1991, 95(21): 8344~8351.
-
[23]
[23] H Schwarz. Angew. Chem. Int. Ed., 2003, 42(37): 4442~4454.
-
[24]
[24] T M Bernhardt. Int. J. Mass Spectrom., 2005, 243(1): 1~29.
-
[25]
[25] P B Armentrout. Int. J. Mass Spectrom., 2003, 227(3): 289~302.
-
[26]
[26] K Koszinowski, D Schröder, H Schwarz. J. Am. Chem. Soc., 2003, 125(13): 3676~3677.
-
[27]
[27] J Roithová, D Schröder. Chem. Rev., 2010, 110(2): 1170~1211.
-
[28]
[28] M Armélin, M Schlangen, H Schwarz. Chem. Eur. J., 2008, 14(17): 5229~5236
-
[29]
[29] K K Irikura, J L Beauchamp. J. Am. Chem. Soc., 1989, 111(1): 75~85.
-
[30]
[30] K K Irikura, J L Beauchamp. J. Am. Chem. Soc., 1991, 113(7): 2769~2770.
-
[31]
[31] P B Armentrout, L Parke, C Hinton et al. Chem. Plus. Chem., 2013, 78(9): 1157~1173.
-
[32]
[32] H G Cho, L Andrews. Organometallics, 2008, 27(8): 1786~1796.
-
[33]
[33] G J Wang, M H Chen, M F Zhou. Chem. Phys. Lett., 2005, 412(1~3): 46~49.
-
[34]
[34] G Albert, C Berg, M Beyer et al. Chem. Phys. Lett., 1997, 268(3~4): 235~241.
-
[35]
[35] K Koszinowski, M Schlangen, D Schröder et al. Int. J. Mass Spectrom., 2004, 237(1): 19~23.
-
[36]
[36] F X Li, X G Zhang, P B Armentrout. Int. J. Mass Spectrom., 2006, 255~256(255): 279~300.
-
[37]
[37] V J F Lapoutre, B Redlich, A F G van der Meer et al. J. Phys. Chem. A, 2013, 117(20): 4115~4126.
-
[38]
[38] S M Lang, T M Bernhardt. Faraday Discuss., 2011, 152: 337~351.
-
[39]
[39] S M Lang, A Frank, T M Bernhardt. J. Phys. Chem. C, 2013, 117(19): 9791~9800.
-
[40]
[40] S M Lang, A Frank, T M Bernhardt. Int. J. Mass Spectrom., 2013, 354~355: 365~371.
-
[41]
[41] S M Lang, A Frank, T M Bernhardt. Catal. Sci. Technol., 2013, 3(11): 2926~2933.
-
[42]
[42] M Schlangen, H Schwarz. Angew. Chem. Int. Ed., 2007, 46(29): 5614~5617.
-
[43]
[43] R Wesendrup, D Schröder, H Schwarz. Angew. Chem. Int. Ed., 1994, 33(11): 1174~1176.
-
[44]
[44] C Heinemann, R Wesendrup, H Schwarz. Chem. Phys. Lett., 1995, 239(1~3): 75~83.
-
[45]
[45] D Schröder, H Schwarz. Can. J. Chem., 2005, 83(11):1936~1940.
-
[46]
[46] J J Carroll, J C Weisshaar. J. Phys. Chem., 1995, 99(39): 14388~14396.
-
[47]
[47] H G Cho, L Andrews. J. Phys. Chem. A, 2008, 112(48): 12293~12295.
-
[48]
[48] U Achatz, C Berg, S Joos et al. Chem. Phys. Lett., 2000, 320(1~2): 53~58.
-
[49]
[49] C Adlhart, E Uggerud. Chem. Commun., 2006, (24):2581~2582.
-
[50]
[50] D J Harding, C Kerpal, G Meijer et al. Angew. Chem. Int. Ed., 2012, 51(3): 817~819.
-
[51]
[51] D J Trevor, D M Cox, A Kaldor. J. Am. Chem. Soc., 1990, 112: 3742~3749.
-
[52]
[52] K Koszinowski, D Schröder, H Schwarz. Organometallics, 2003, 22(19): 3809~3819.
-
[53]
[53] M Brönstrup, D Schröder, I Kretzschmar et al. J. Am. Chem. Soc., 2001, 123(1): 142~147.
-
[54]
[54] Y X Zhao, Z Y Li, Z Yuan et al. Angew. Chem. Int. Ed., 2014, 53(36): 9482~9486.
-
[55]
[55] W E Billups, M M Konarski, R H Hauge et al. J. Am. Chem. Soc., 1980, 102(24): 7393~7394.
-
[56]
[56] S M Lang, T M Bernhardt, R N Barnett et al. Angew. Chem. Int. Ed., 2010, 49(5): 980~983.
-
[57]
[57] S M Lang, T M Bernhardt, R N Barnett et al. J. Phys. Chem. C, 2011, 115(14): 6788~6795.
-
[58]
[58] X N Wu, X N Li, X L Ding et al. Angew. Chem. Int. Ed., 2013, 52(9): 2444~2448.
-
[59]
[59] L N Wang, Zh X Zhou, X N Li et al. Chem. Eur. J. 2015, 21(18): 6957~6961.
-
[60]
[60] M Pavlov, M R A Blomberg, P E M Siegbahn et al. J. Phys. Chem. A, 1997, 101(8): 1567~1579.
-
[61]
[61] F Y Liu, X G Zhang, P B Armentrout. Phys. Chem. Chem. Phys., 2005, 7(5): 1054~1064.
-
[62]
[62] X H Zhang, H Schwarz. Chem. Eur. J., 2010, 16(20): 5882~5888.
-
[63]
[63] C K Siu, S J Reitmeier, I Balteanu et al. Eur. Phys. J. D, 2007, 43(1~3): 189~192.
-
[64]
[64] L L Lv, Y C Wang, Y Z Jin. Theor. Chem. Acc., 2011, 130(1): 15~25.
-
[65]
[65] H Schwarz. Isr. J. Chem., 2014, 54(10): 1413~1431.
-
[66]
[66] M Che, A Tench. J. Adv. Catal., 1983, 32: 1~148.
-
[67]
[67] X L Ding, X N Wu, Y X Zhao et al. Acc. Chem. Res., 2012, 45(3): 382~390.
-
[68]
[68] P Pyykkö. Angew. Chem. Int. Ed., 2004, 43(34): 4412~4456.
-
[69]
[69] M Citir, R B Metz, L Belau et al. J. Phys. Chem. A, 2008, 112(39):9584~9590.
-
[70]
[70] M C McCarthy, R W Field, R Engleman et al. J. Mol. Spectroc., 1993, 158(1):208~236.
-
[1]
-
-
-
[1]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[2]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[3]
Feifei Yang , Wei Zhou , Chaoran Yang , Tianyu Zhang , Yanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017
-
[4]
Haoyu Sun , Dun Li , Yuanyuan Min , Yingying Wang , Yanyun Ma , Yiqun Zheng , Hongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007
-
[5]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[6]
Zhi Chai , Huashan Huang , Xukai Shi , Yujing Lan , Zhentao Yuan , Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046
-
[7]
Bolin Sun , Jie Chen , Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032
-
[8]
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
-
[9]
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
-
[10]
Guowen Xing , Guangjian Liu , Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058
-
[11]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[12]
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
-
[13]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[14]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[15]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[16]
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
-
[17]
Lancanghong Chen , Xingtai Yu , Tianlei Zhao , Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089
-
[18]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019
-
[19]
Lubing Qin , Fang Sun , Meiyin Li , Hao Fan , Likai Wang , Qing Tang , Chundong Wang , Zhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008
-
[20]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
-
[1]
Metrics
- PDF Downloads(9)
- Abstract views(552)
- HTML views(87)