Citation: Zhang Suge, Sun Hongxia, Tang Yalin. Research Progress in the Probes Targeting DNA G-quadruplex[J]. Chemistry, ;2016, 79(5): 387-394. shu

Research Progress in the Probes Targeting DNA G-quadruplex

  • Corresponding author: Sun Hongxia,  Tang Yalin, 
  • Received Date: 30 November 2015
    Available Online: 28 December 2015

    Fund Project:

  • G-quadruplexes are non-canonical secondary DNA/RNA structure formed by guanine-rich oligonucleotide sequences, which widely exist in eukaryotic genomes, such as telomeric DNA, rDNA, and promoter regions of oncogenes. G-quadruplex structure may play a pivotal role in the control of a variety of cellar processes including telomere maintenance, replication, transcription, and translation. Detection of the quadruplex structures using the probes with high specificity and sensitivity will help us to explore the distribution, function, and mechanism of G-quadruplexes in human cells, and may also provide new diagnostic and therapeutic approaches of cancer via targeting G-quadruplex. In the last two decades, various targeting G-quadruplex probes which have high selectivity and sensitivity have been designed, and these probes have been used to recognize different G-quadruplex topologies in solutions. A few probes have also been applied to recognize G-quadruplex in vivo. This article reviews the typical probes targeting G-quadruplexes as well as their application in detection G-quadruplexes in chromosome and cell level. Authors hope this paper can provide a certain reference for design of G-quadruplex-targeting probes and further realization of G-quadruplex detection in living cells.
  • 加载中
    1. [1]

      [1] (a) M Frank-Kamenetskii. Nature, 1989, 342:737; (b) M Frank-Kamenetskii. Nature,1992, 356: 105~105.

    2. [2]

      [2] J L Huppert, S Balasubramanian. Nucl. Acids Res., 2005, 33: 2908~2916.

    3. [3]

      [3] (a) F Aboul-ela, A I H Murchie, D M J Lilley. Nature, 1992, 360: 280~282; (b) Y Wang, D J Patel. Biochemistry, 1992, 31:8112~8119.

    4. [4]

      [4] (a) L Malinina, R E Brown. Structure, 2015, 23:1371~1372; (b) A Kettani, S Bouaziz, A Gorin et al. J. Mol. Biol. 1998, 282:619~636.

    5. [5]

      [5] Y Wang, D J Patel. Structure, 1994, 2:1141~1156.

    6. [6]

      [6] J T Davis. Angew. Chem. Int. Ed., 2004, 43:668~698.

    7. [7]

      [7] A K Todd, M Johnston, S Neidle. Nucl. Acids Res., 2005, 33:2901~2907.

    8. [8]

      [8] (a) T Simonsson, M Kubista, P Pecinka. Nucl. Acids Res., 1998, 26: 1167~1172; (b) A Siddiqui-Jain, C L Grand, D J Bearss et al. PNAS, 2002, 99:11593~11598; (c) S Lyonnais, C Hounsou, M P Teulade-Fichou et al. Nucl. Acids Res., 2002, 30: 5276~5283.

    9. [9]

      [9] D Sun, K Guo, J J Rusche et al. Nucl. Acids Res., 2005, 33: 6070~6080.

    10. [10]

      [10] (a) S Cogoi, M Paramasivam, V Filichev et al. J.Med. Chem., 2009, 52:564~568; (b) S Cogoi, L E Xodo. Nucl. Acids Res., 2006, 34: 2536~2549.

    11. [11]

      [11] (a) J Dai, T S Dexheimer, D Chen et al. J. Am. Chem. Soc., 2006, 128: 1096~1098; (b) T S Dexheimer, D Sun, L H Hurley. J. Am. Chem. Soc., 2006, 128: 5404~5415.

    12. [12]

      [12] (a) S Rankin, A P Reszka, J Huppert et al. J. Am. Chem. Soc., 2005, 127:10584~10589; (b) A T Phan, V Kuryavyi, S Burge et al. J. Am. Chem. Soc., 2007, 129:4386~4392; (c) D J Patel, A T Phan, V Kuryavyi. Nucl. Acids Res., 2007, 35:7429~7455.

    13. [13]

      [13] E M Rezler, Y Qin, L H Hurley. Clin. Cancer Res., 2003, 9:6124S.

    14. [14]

      [14] (a) K Paeschke, T Simonsson, J Postberg et al. Nat. Struct. Mol. Biol., 2005, 12: 847~854; (b) N Maizels. Nat. Struct. Mol. Biol., 2006, 13: 1055~1059; (c) D Sen, W Gilbert. Nature, 1988, 334: 364~366.

    15. [15]

      [15] T A Brooks, S Kendrick, L Hurley. FEBS J., 2010, 277: 3459~3469.

    16. [16]

      [16] P Murat, S Balasubramanian. Curr. Opin. Genet. Dev., 2014, 25: 22~29.

    17. [17]

      [17] R Rodriguez, S Müller, J A Yeoman et al. J. Am. Chem. Soc., 2008, 130: 15758~15759.

    18. [18]

      [18] E Largy, A Granzhan, F Hamon et al. Quadruplex Nucl. Acids, 2013, 330:111~177.

    19. [19]

      [19] F Koeppel, J F Riou, A Laoui et al. Nucl. Acids Res., 2001, 29: 1087~1096.

    20. [20]

      [20] (a) C C Chang, J Y Wu, C W Chien et al. Anal. Chem., 2003, 75: 6177~6183; (b) C C Chang, I C Kuo, I F Ling et al. Anal. Chem., 2004, 76:4490~4494.

    21. [21]

      [21] P Yang, A de Cian, M P Teulade-Fichou et al.Angew. Chem. Int. Ed., 2009, 48:2188~2191.

    22. [22]

      [22] J W Yan, W J Ye, S B Chen et al. Anal. Chem., 2012, 84: 6288~6292.

    23. [23]

      [23] Y J Lu, S C Yan, F Y Chan et al. Chem. Commun., 2011, 47: 4971~4973.

    24. [24]

      [24] J W Yan, S B Chen, H Y Liu et al. Chem, Commun., 2014, 50: 6927~6930.

    25. [25]

      [25] M Tera, K Iida, K Ikebukuro et al. Org. Biomol. Chem., 2010, 8: 2749~2755.

    26. [26]

      [26] (a) Q Yang, J Xiang, S Yang et al. Chem. Commun., 2009: 1103~1105; (b) Q Yang, J Xiang, S Yang et al. Nucl. Acids Res., 2010, 38:1022~1033.

    27. [27]

      [27] B Jin, X Zhang, W Zheng et al. Anal. Chem., 2014, 86: 7063~7070.

    28. [28]

      [28] B Jin, X Zhang, W Zheng et al. Anal. Chem., 2014, 86:943~952.

    29. [29]

      [29] M Nikan, M di Antonio, K Abecassis et al. Angew. Chem. Int. Ed., 2013, 52:1428~1431.

    30. [30]

      [30] M Gajhede, T N Petersen, A Henriksen et al. Structure, 1993, 1: 253~262.

    31. [31]

      [31] C C Chang, J F Chu, F J Kao et al. Anal. Chem., 2006, 78: 2810~2815.

    32. [32]

      [32] W Gai, Q Yang, J Xiang et al. Analyst, 2013, 138:798~804.

    33. [33]

      [33] E Y Lam, D Beraldi, D Tannahill et al. Nat. Commun., 2013, 4: 1796.

    34. [34]

      [34] (a) N D Hastie, M Dempster, M G Dunlop et al. Nature, 1990, 346: 866~868; (b) A J Bateman. Nature, 1975, 253:379~389.

    35. [35]

      [35] C Granotier, G Pennarun, L Riou et al. Nucl. Acids Res., 2005, 33: 4182~4190.

    36. [36]

      [36] G Biffi, D Tannahill, J McCafferty et al. Nat. Chem., 2013, 5: 182~186.

    37. [37]

      [37] A Henderson, Y Wu, Y C Huang et al. Nucl. Acids Res., 2014, 42: 860~869.

    38. [38]

      [38] A Shivalingam, M A Izquierdo, A Le Marois et al. Nat. Commun., 2015, 6:8178.

  • 加载中
    1. [1]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    2. [2]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    3. [3]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    4. [4]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    5. [5]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    6. [6]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    7. [7]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    8. [8]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    9. [9]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    10. [10]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    11. [11]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    12. [12]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    13. [13]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    14. [14]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    15. [15]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    16. [16]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    17. [17]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    18. [18]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    19. [19]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    20. [20]

      Wei GAOMeiqi SONGXuan RENJianliang BAIJing SUJianlong MAZhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112

Metrics
  • PDF Downloads(0)
  • Abstract views(705)
  • HTML views(179)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return