Citation: Wu Xiaojing, Yu Xuehui, Liu Azuan, Jiang Weiguo, Cheng Longjiu. Study on CuCl2 in Aqueous Solutions by Density Functional Theory and Raman Spectroscopy[J]. Chemistry, ;2016, 79(8): 754-759. shu

Study on CuCl2 in Aqueous Solutions by Density Functional Theory and Raman Spectroscopy

  • Received Date: 6 January 2016
    Available Online: 24 February 2016

    Fund Project:

  • Density functional theory (DFT) and Raman spectroscopy have been employed in studying on copper chloride solution. The structures have been investigated using B3LYP, information of the clusters in solution is obtained in the kinetic and thermodynamic analysis. The theoretical Raman spectra in the 100~500 cm-1 is mainly Cu-O stretching vibration peak, the symmetric and asymmetric stretching vibration of O-H is located at 3400~4000 cm-1. Experimental spectra emerge newly peak in the 200~340 cm-1, stretching vibration peak of O-H is located in the 2500~4000 cm-1,with the increase of the solution concentration, stretching vibration peak intensity of O-H decreases gradually and peak shape was changed significantly. A comprehensive conclusion from the theoretical and experimental studies is that the newly peak caused by the vibration of the Cu-O, CuCl2 present in the aqueous solution can produce the solvation phenomenon, and solvation number decreases with the increase of the solution concentration.
  • 加载中
    1. [1]

      [1] H Bian, X Wen, J Li et al. PNAS, 2011,108(12): 4737~4742.

    2. [2]

      [2] I A Heisler, S R Meech. Science, 2010, 327:857~859.

    3. [3]

      [3] Y Liu, S Zhao, J Wu. J. Chem. Theory. Comput., 2013,9(4):1896~1908.

    4. [4]

      [4] C Meng, K Yang, X Z Fu et al. ACS Catal., 2015, 5:3760~3766.

    5. [5]

      [5] W Du, L B Yin, Y Zhuo et al. Ind. Eng. Chem. Res., 2014, 53:582~591.

    6. [6]

      [6] X Pei, W J Kang, A Bange et al. Anal. Chem., 2014, 86:4893~4900.

    7. [7]

      [7] A T Heijne, F Liu, R van de Weijden. Environ. Sci. Technol., 2010, 44:4376~4381.

    8. [8]

      [8] D A Sverjensky, E L Shock, H C Heigeson. Geochim. Cosmochim. Aeta, 1997, 61(7):1359~1412.

    9. [9]

      [9] F F Xia, H B Yi, D W Zeng. J. Phys. Chem. A, 2010, 114(32): 8406~8416.

    10. [10]

      [10] M A Khan, M J Schwing-Weill. Inorg. Chem., 1976, 15(9):2202~2205.

    11. [11]

      [11] 杨丹, 徐文艺. 光谱学与光谱分析, 2011, 31(10): 2742~2746.

    12. [12]

      [12] Matthew S Dyer, C Collins, D Hodgeman et al. Science, 2013, 340: 847~851.

    13. [13]

      [13] 孙小丽, 霍瑞萍, 步宇翔. 高等学校化学学报, 2015, 08:1570~1575.

    14. [14]

      [14] 张磊, 徐增平, 于皓宇. 高等学校化学学报, 2014, 06:1241~1246.

    15. [15]

      [15] Y Umebayashi, T Mitsugi, S Fukuda et al. J. Phys. Chem. B, 2007, 111: 13028~13032.

    16. [16]

      [16] M F Kropman, H J Bakker. Science, 2001, 291:2118~2120.

    17. [17]

      [17] D A Estrin, L Paglieri, G Corongiu et al. J. Phys. Chem., 1996, 100(21), 8701~8709.

    18. [18]

      [18] M Smiechowski, J Stangret. J. Phys. Chem. A, 2007, 111: 2889~2897.

  • 加载中
    1. [1]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    2. [2]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    3. [3]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    4. [4]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    5. [5]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    6. [6]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    7. [7]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    8. [8]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    9. [9]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    10. [10]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    11. [11]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    12. [12]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    13. [13]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    14. [14]

      Lubing QinFang SunMeiyin LiHao FanLikai WangQing TangChundong WangZhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008

    15. [15]

      Linfeng Zhou Yulin Zhang Suhao Lin Longguan Zhu . 2023年北京大学金秋营及第37届中国化学奥林匹克决赛磷团簇相关试题解析与拓展. University Chemistry, 2025, 40(8): 376-387. doi: 10.12461/PKU.DXHX202411030

    16. [16]

      Xiaohang JINQi LIUJianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125

    17. [17]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    18. [18]

      Jianquan Liu Xiangshan Wang . Teaching Design and Practice of Naming Rules for Circular Isomer Configuration under the Guidance of Information Literacy. University Chemistry, 2025, 40(7): 352-358. doi: 10.12461/PKU.DXHX202409082

    19. [19]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    20. [20]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

Metrics
  • PDF Downloads(15)
  • Abstract views(354)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return