Citation: Wang Weili, Wang Jingyun, Dong Xiaozhe, Chen Ping. Advances in Catalytic-Oxidation Degradation of Lignin[J]. Chemistry, ;2016, 79(8): 731-738. shu

Advances in Catalytic-Oxidation Degradation of Lignin

  • Corresponding author: Wang Jingyun, 
  • Received Date: 5 January 2016
    Available Online: 28 February 2016

    Fund Project:

  • The progress in catalytic-oxidation degration of lignin in recent years are reviewed according to the different catalyzers, reaction condition and mechanism. Metal catalytic-oxidation including the reaction carried out with O2 and H2O2 as oxidants such as:organometal catalytic-oxidation, metal/bromide catalytic-oxidation, metal complexe catalytic-oxidation, multiple-metal oxidants and Perovskite-type oxide catalytic-oxidation, metal/zeolites catalytic-oxidation and catalytic-oxidation by the oxidants themselves, as well as metal-free catalytic-oxidation, microwave assisted oxidative, photocatalystic oxidization, electrochemical oxidation for upgrading lignin and lignin model compounds are introduced emphatically.
  • 加载中
    1. [1]

      [1] G W Huber, S Iborra, A Corma. Chem. Rev, 2006, 106(9): 4044~4098.

    2. [2]

      [2] 刘玉, 詹怀宇, 陈嘉川. 中国造纸学报, 2005, 20(2): 43.

    3. [3]

      [3] 郑大锋, 邱学青, 楼宏铭. 精细化工, 2005, 22(4): 249~252.

    4. [4]

      [4] W A Hermann, R W Fischer, W Scherer et al. Angew. Chem. Int. Ed., 1993, 32(8): 1157~1160.

    5. [5]

      [5] C Crestini, P Pro, V Neri et al. Bioorg. Med. Chem., 2005, 13(7): 2569~2578.

    6. [6]

      [6] C Crestini, M C Caponi, D S Argyropoulos et al. Bioorg. Med. Chem., 2006, 14(15): 5292~5302.

    7. [7]

      [7] W Partenheimer. Catal. Today, 1995, 23(2): 69~158.

    8. [8]

      [8] A Goncalves, U Schuchardt. Appl. Biochem. Biotechnol., 1999, 77~79: 127~132.

    9. [9]

      [9] W Partenheimer. Adv. Synth. Catal., 2009, 351(3): 456~466.

    10. [10]

      [10] W Partenheimer. Adv. Synth. Catal., 2004, 346(12): 1495~1500.

    11. [11]

      [11] (a) W Partenheimer. Adv. Synth. Catal., 2004, 346(2~3): 297~306; (b) W Partenheimer. Adv. Synth. Catal., 2005, 347(4): 580~590.

    12. [12]

      [12] W Partenheimer. Catal. Today, 1995, 23: 69~158.

    13. [13]

      [13] 谢如刚. 化学研究与应用, 1999, 11(4): 344~349.

    14. [14]

      [14] 王蕊, 钱学仁. 林产化学与工业, 2004, 24(1): 101~106.

    15. [15]

      [15] 邓日灵, 周学飞, 朱正良. 造纸科学与技术, 2008, 27(3): 13~17.

    16. [16]

      [16] 周学飞, 邓日灵, 王树荣. 江苏大学学报(自然科学版), 2011, 32(1): 99~102.

    17. [17]

      [17] X F Zhou, J Liu. Hem. Ind., 2012, 66(5): 685~692.

    18. [18]

      [18] X F Zhou, J X Qin, S R Wang. Drewno-Wood, 2011, 54: 15~25.

    19. [19]

      [19] D Cedeno, J J Bozell. Tetrahed. Lett., 2012, 53: 2380~2383.

    20. [20]

      [20] K Kervinen, P Lahtinen, T Repo. Catal. Today, 2002, 75(1): 183~188.

    21. [21]

      [21] 高洪贵. 山东轻工业学院硕士学位论文, 2009.

    22. [22]

      [22] X J Lu, X F Zhou. Oxid. Commun., 2014, 37: 572~582.

    23. [23]

      [23] J J Bozell, B R Hames, D R Dimmel. Cheminform., 1995, 26: 2398~2404.

    24. [24]

      [24] B Biannic, J J Bozell, T Elder. Green Chemistry, 2014, 16: 3635~3642.

    25. [25]

      [25] S Son, F D Toste. Angew. Chem. Int. Ed., 2010, 49: 3791~3794.

    26. [26]

      [26] S K Hanson, R Wu, L A Silks. Angew. Chem. Int. Ed., 2012, 51: 3410~3413.

    27. [27]

      [27] S K Hanson, R T Baker, J C Gordon et al. Inorg. Chem., 2010, 49: 5611~5618.

    28. [28]

      [28] H Werhan, J M Mir, T Voitl et al. Holzforschung, 2011, 65: 703~709.

    29. [29]

      [29] 石忠亮, 刘仕伟, 于世涛. 化工科技, 2012, 20(5): 1~3.

    30. [30]

      [30] K Stärk, N Taccardi, A Bçsmann et al. ChemSusChem, 2010, 3: 719~723.

    31. [31]

      [31] I A Pearl, D L Beyer. Tappi, 1959, 42(9): 800~804.

    32. [32]

      [32] J I Hedges, G L Cowie, J R Ertel et al. Geochim. Cosmochim. Acta, 1985, 49(3): 701~711.

    33. [33]

      [33] J C Villar, A Caperod, F Garcia-Ochoa. J. Wood Chem. Technol., 1997, 17(3): 259~285.

    34. [34]

      [34] R C Sun, J M Lawther, W B Banks. Ind. Crop. Prod., 1995: 4241~4254.

    35. [35]

      [35] M A Goni, S Montgomery. Anal. Chem., 2000, 72: 3116~3121.

    36. [36]

      [36] 邓海波, 林鹿, 孙勇等. 催化学报, 2008, 29(8): 753~757.

    37. [37]

      [37] J H Zhang, H B Deng, L Lin. Molecules, 2009, 14: 2747~2757.

    38. [38]

      [38] H B Deng, L Lin, Y Sun et al. Energ. Fuel., 2009, 23: 19~24.

    39. [39]

      [39] H B Deng, L Lin, S J Liu. Energ. Fuel., 2010, 24: 4797~4802.

    40. [40]

      [40] P Gao, N Li, A Wang et al. Mater. Lett., 2013, 92: 173~176.

    41. [41]

      [41] Z Q Zhao, X P Ouyang. Adv. Mater. Res., 2012, 550~553:1208~1213.

    42. [42]

      [42] 欧阳新平, 谭友丹, 邱学青. 燃料化学学报, 2014, 42(6): 677~682.

    43. [43]

      [43] X L Gu, K H Cheng, M He et al. Maderas Cienc. Tecnol., 2012, 14(1): 31~42.

    44. [44]

      [44] Y Zhou, J P Zhang, X G Luo et al. J. Appl. Polym. Sci., 2014, 131(18): 40749.

    45. [45]

      [45] S K Badamali, R Luque, J H Clark et al. Catal. Commun., 2009, 10: 1010~1013.

    46. [46]

      [46] 李忠正, 任承霞, 王海燕. 中国造纸学报, 2006, 21(3): 1~5.

    47. [47]

      [47] S P Mishra, J Thirree, A S Manent et al. Bioresources, 2011, 6: 121~143.

    48. [48]

      [48] A Rahimi, A Azarpira, H Kim et al. J. Am. Chem. Soc., 2013, 135: 6415~6418.

    49. [49]

      [49] S W Liu, Z L Shi, L Li et al. RSC Adv., 2013, 3: 5789~5793.

    50. [50]

      [50] X P Ouyang, Z X Lin, Y H Deng et al. Chin. J. Chem. Eng., 2010, 18(4): 695~702.

    51. [51]

      [51] 陈云平, 傅艳斌, 杨平等. 生物质化学工程, 2009, 43(6): 31~35.

    52. [52]

      [52] 刘飞跃, 徐银崧. 纤维素科学与技术, 2006, 14(3): 24~31.

    53. [53]

      [53] K Walsh, H F Sneddon, C J Moody. Org. Lett., 2014, 16: 5224~5227.

    54. [54]

      [54] Y Q Pu, S Anderson, L Lucia et al. J. Photochem. Photobiol. A, 2004, 163: 215~221.

    55. [55]

      [55] M Ugurlu, M H Karaoglu, Chem. Eng. J., 2011, 166: 859~867.

    56. [56]

      [56] S K Kansal, M Singh, D Sud. J. Hazard. Mater., 2008, 153: 412~417.

    57. [57]

      [57] E I Kovalenko, V A Smirnov, V N Shalimov. Zhurnal Prikladnoi Khimii, 1977, 50(8): 1741~1744.

    58. [58]

      [58] E Reichert, R Wintringer, D A Volmer et al. Phys. Chem. Chem. Phys., 2012, 14: 5214~5221.

    59. [59]

      [59] M Díaz-González, T Vidal, T Tzanov. Appl. Microbiol. Biotechnol., 2011, 89: 1693~1700.

    60. [60]

      [60] L Pollegioni,F Tonin, E Rosini. FEBS J., 2015, 282(7): 1190~1213.

    61. [61]

      [61] H Lange, S Decina, C Crestini. Eur. Polym. J., 2013, 49:1151~1173.

    62. [62]

      [62] 胡立红, 周永红, 刘瑞杰等. 生物质化学工程, 2012, 46(1): 23~33.

    63. [63]

      [63] 杨伯伦, 贺拥军. 现代化工, 2001, 21(4):8~12.

    64. [64]

      [64] 薛建军, 李忠正. 林产化学与工业, 2001, 21(2):5~8.

    65. [65]

      [65] M Olivares, J A Guzmán, A Natho et al. Wood Sci. Technol.,1988, 22:157~165.

  • 加载中
    1. [1]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    2. [2]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    3. [3]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    4. [4]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    5. [5]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    6. [6]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    7. [7]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    8. [8]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    9. [9]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    10. [10]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    11. [11]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    12. [12]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    13. [13]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    16. [16]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    17. [17]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    18. [18]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    19. [19]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    20. [20]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

Metrics
  • PDF Downloads(1)
  • Abstract views(432)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return