Citation: Li Tiemei, Song Yuefei, Lv Xiangying, Fan Jing. Progress of Preparation and Applications of Ionic Liquid and Polymeric Ionic Liquid-Based Sorbent Coating in Solid-Phase Microextraction[J]. Chemistry, ;2016, 79(8): 723-730. shu

Progress of Preparation and Applications of Ionic Liquid and Polymeric Ionic Liquid-Based Sorbent Coating in Solid-Phase Microextraction

  • Corresponding author: Fan Jing, 
  • Received Date: 25 December 2015
    Available Online: 18 March 2016

    Fund Project:

  • Solid-phase microextraction (SPME) has been developed rapidly as a new sample pretreatment technique due to its simplicity, short duration, easy automation, and solvent-free properties. Coating is the core of SPME technique, which determines the selectivity and extraction capacity of analysis. Ionic liquids (ILs) and polymeric ionic liquids (PILs), which possess unique properties such as environment-friendliness, negligible vapor pressure, good thermal stability, design flexibility, high viscosity and so on, have been exploited as sorbent coatings in SPME for various analytes, exhibiting excellent extraction effect and unique selectivity. This paper comprehensively reviewed the progress of IL and PIL-based sorbent coatings in SPME in the following aspects, characteristics of preparation, coating morphology, selectivity, stability and coating lifetime and applications for the past few years. Then, the advantages and disadvantages of this technology were discussed. Finally, the improving direction of the preparation and applications of IL and PIL-based sorbent coatings in SPME were prospected.
  • 加载中
    1. [1]

      [1] C L Arthur, J Pawliszyn. Anal. Chem., 1990, 62(19): 2145~2148.

    2. [2]

      [2] 彭英 何欢 孙成 等. 分析化学, 2013, 4: 529~533.

    3. [3]

      [3] M A Moreira, L C Andre, Z D Cardeal. Food Chem., 2015, 178: 195~200..

    4. [4]

      [4] L Anzillotti, E Castrignano, S S Rossi et al. Sci. Justice, 2014, 54(6): 421~426.

    5. [5]

      [5] 王毅, 刘子秋. 医药导报, 2014, 33(5): 575~578.

    6. [6]

      [6] 陈德文, 廖新艳, 王正林等. 食品科学, 2014, 35(6): 125~128.

    7. [7]

      [7] 李娟英, 李振华, 崔昱等. 生态毒理学报, 2015, 10(3): 144~152.

    8. [8]

      [8] 马康, 张金娜, 何雅娟等. 化学通报, 2011, 74(9): 822~826.

    9. [9]

      [9] T M Li, Z A Lin, L Zhang et al. Analyst, 2010, 135: 2694~2699.

    10. [10]

      [10] D Wang, Z M Zhang, L Luo et al. Nanotechnology, 2009, 20: 465702~465707.

    11. [11]

      [11] Y Y Zhao, X Y Gong, X Y Si et al. Analyst, 2015, 140(8): 2599~2602.

    12. [12]

      [12] W Guan, F Xu, Y F Guan. J. Chromatogr. A, 2007, 1147: 59~65.

    13. [13]

      [13] M M Liu, X Zhou, Y Y Chen et al. Anal. Chim. Acta, 2010, 683(1), 96~106.

    14. [14]

      [14] B Singco, C L Lin, Y J Cheng et al. Anal. Chim. Acta, 2012, 746: 123~133.

    15. [15]

      [15] 赵发琼, 李晶, 曾百肇. 分析化学, 2009, 37(6): 939~942.

    16. [16]

      [16] X Gao, J Fan, G F Zhu et al. J. Sep. Sci., 2013, 36(19): 3277~3284.

    17. [17]

      [17] 樊静, 范云场, 王键吉等. 化学学报, 2006, 64(14): 1495~1499.

    18. [18]

      [18] T D Ho, A J Canestraro, J L Anderson. Anal. Chim. Acta, 2011, 695: 18~43.

    19. [19]

      [19] F Zhao, Y Meng, J L Anderson. J. Chromatogr. A, 2008, 1208(1-2): 1~9.

    20. [20]

      [20] J F Liu, N Li, G B Jiang et al. J. Chromatogr. A, 2005, 1066(1-2): 27~32.

    21. [21]

      [21] Y N Hsieh, P C Huang, I W Sun et al. Anal. Chim. Acta, 2006, 557(1): 321~328.

    22. [22]

      [22] Y Feng, F Zhao, B Zeng. J. Sep. Sci., 2015, 38(9): 1570~1576.

    23. [23]

      [23] K P Huang, G R Wang, B Y Huang et al. Anal. Chim. Acta, 2009, 645(1-2): 42~47.

    24. [24]

      [24] M Cui, J Qiu, Z Li et al. Talanta, 2015, 132: 564~571.

    25. [25]

      [25] T T Ho, C Y Chen, Z G Li et al. Anal. Chim. Acta, 2012, 712(2): 72~77.

    26. [26]

      [26] Y He, J Pohl, R Engel et al. J. Chromatogr. A, 2009, 1216(24): 4824~4830.

    27. [27]

      [27] S L Chong, D Wang, J D Hayes et al. Anal. Chem., 1997, 69: 3889~3898.

    28. [28]

      [28] A M Shearrow, G A Harris, F Li et al. J. Chromatogr. A, 2009, 1216(29): 5449~5458.

    29. [29]

      [29] A M Shearrow, S Bhansali, A Malik. J. Chromatogr. A, 2009, 1216(36): 6349~6355.

    30. [30]

      [30] A Sarafraz-Yazdi, H Vatani. J. Chromatogr. A, 2013, 1300(14): 104~111.

    31. [31]

      [31] F Pena-Pereira, L Marcinkowski, A Kloskowski, et al. Anal. Chem., 2014, 86(23): 11640~11648.

    32. [32]

      [32] H Vatani, A S Yazdi. J. Iran. Chem. Soc, 2014, 11(4): 969~977.

    33. [33]

      [33] X Zhou, X Shao, J J Shu et al. Talanta, 2012, 89: 129~135.

    34. [34]

      [34] Z Q Gao, Y H Deng, X B Hu et al. J. Chromatogr. A, 2013, 1300: 141~150.

    35. [35]

      [35] X Zhou, P F Xie, J Wang et al. J. Chromatogr. A, 2011, 1218: 3571~3580.

    36. [36]

      [36] J Shu, P Xie, D Lin et al. Anal. Chim. Acta, 2014, 806: 152~164.

    37. [37]

      [37] X Zhou, J Shang, M M Liu et al. Acta Chim. Sin., 2010, 68(117): 1749~1757.

    38. [38]

      [38] F Q Zhao, M L Wang, Y Y Ma et al. J. Chromatogr. A, 2011, 1218(3): 387~391.

    39. [39]

      [39] Z Gao, W Li, B Liu et al. J. Chromatogr. A, 2011, 1218(37): 6285~6291.

    40. [40]

      [40] M L Wang, J Wang, F Q Zhao et al. Chinese J. Anal. Chem., 2011, 39(7): 1043~1047.

    41. [41]

      [41] Y Ai, F Zhao, B Zeng. Anal. Chim. Acta, 2015, 880: 60~66.

    42. [42]

      [42] M Wu, L Wang, B Zeng et al. J. Chromatogr. A, 2014, 1364: 45~52.

    43. [43]

      [43] M Wu, H Zhang, F Zhao et al. Anal. Chim. Acta, 2014, 850: 41~48.

    44. [44]

      [44] F O Pelit, L Pelit, T N Dizdas et al. Anal. Chim. Acta, 2015, 859: 37~45.

    45. [45]

      [45] R Amini, A Rouhollahi, M Adibi et al. J. Chromatogr. A, 2011, 1218(1): 130~136.

    46. [46]

      [46] J López-Darias, V Pino, J L Anderson et al. J. Chromatogr. A, 2010, 1217: 1236~1243.

    47. [47]

      [47] Y J Meng, V Pino, J L Anderson. Anal. Chim. Acta, 2011, 687: 141~149.

    48. [48]

      [48] Y J Meng, J L Anderson. J. Chromatogr. A, 2010, 1217: 6143~6152.

    49. [49]

      [49] J López-Darias, V Pino, Y J Meng et al. J. Chromatogr. A, 2010, 1217(46): 7189~7197.

    50. [50]

      [50] J J Feng, M Sun, Y N Bu et al. J. Chromatogr. A, 2015, 1393: 8~17.

    51. [51]

      [51] E Wanigasekara, S Perera, A Jeffrey et al. Anal. Bioanal. Chem., 2010, 396: 511~524.

    52. [52]

      [52] C Zhang, J L Anderson. J. Chromatogr. A, 2014, 1344: 15~22.

    53. [53]

      [53] J J Feng, M Sun, L L Xu et al. J. Chromatogr. A, 2011, 1218: 7758~7764.

    54. [54]

      [54] J J Feng, M Sun, J B Li et al. J. Chromatogr. A, 2013, 1300(14): 104~111.

    55. [55]

      [55] J J Feng, M Sun, L L Li et al. Talanta, 2014, 123(9): 18~24.

    56. [56]

      [56] L Pang, J F Liu. J. Chromatogr. A, 2012, 1230: 8~14.

    57. [57]

      [57] T D Ho, H L Yu, W T S Cole et al. Anal. Chem., 2012, 84: 9520~9528.

    58. [58]

      [58] J Jia, X Liang, L Wang et al. J. Chromatogr. A, 2013, 1320(20): 1~9.

    59. [59]

      [59] J Jia, S Liu, Y Guo et al. Anal. Methods, 2014, 6: 7875~7882.

    60. [60]

      [60] T D Ho, B R Toledo, L W Hantao et al. Anal. Chim. Acta, 2014, 843: 18~26.

    61. [61]

      [61] M D Joshi, T T Ho, W T Cole et al. Talanta, 2014, 118: 172~179.

    62. [62]

      [62] C Chen, X Liang, J Wang et al. J. Chromatogr. A, 2014, 1348: 80~86.

  • 加载中
    1. [1]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    2. [2]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    3. [3]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    4. [4]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    5. [5]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    6. [6]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

    7. [7]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    8. [8]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    10. [10]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    11. [11]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    12. [12]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    13. [13]

      Yi Fan Zhuoqi Jiang Zhipeng Li Xuan Zhou Jingan Lin Laiying Zhang Xu Hou . 偶极诱导液体门控可视化物质检测——化学“101计划”表界面性质应用实验新设计. University Chemistry, 2025, 40(8): 265-271. doi: 10.12461/PKU.DXHX202410061

    14. [14]

      Yangrui XuYewei RenXinlin LiuHongping LiZiyang Lu . NH2-UIO-66 Based Hydrophobic Porous Liquid with High Mass Transfer and Affinity Surface for Enhancing CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-0. doi: 10.3866/PKU.WHXB202403032

    15. [15]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    16. [16]

      Guoze YanBin ZuoShaoqing LiuTao WangRuoyu WangJinyang BaoZhongzhou ZhaoFeifei ChuZhengtong LiYamauchi YusukeMelhi SaadXingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 2404006-0. doi: 10.3866/PKU.WHXB202404006

    17. [17]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    18. [18]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    19. [19]

      Xiaojun LiuLang QinYanlei Yu . Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications. Acta Physico-Chimica Sinica, 2024, 40(5): 2305018-0. doi: 10.3866/PKU.WHXB202305018

    20. [20]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

Metrics
  • PDF Downloads(0)
  • Abstract views(360)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return