Citation: Hu Ziqiao, Liu Sihai, Liu Jinhua, Li Xiuyun. Progress in Thermal Stability of Water-Soluble Polymers[J]. Chemistry, ;2016, 79(8): 714-718,722. shu

Progress in Thermal Stability of Water-Soluble Polymers

  • Corresponding author: Hu Ziqiao, 
  • Received Date: 5 April 2016
    Available Online: 26 April 2016

    Fund Project:

  • Water-soluble polymers are widely used in petroleum development, water treatment, paper making, printing, medicine and so on, whose application at high temperature depends on their thermal stability. In this paper, the thermal performances of several typical water-soluble polymers are reviewed. Furthermore, the mechanisms of thermal degradation for different types of water-soluble polymers are revealed. In addition, the effect of molecular structure and external additives on thermal stability is discussed as well. Finally, the development prospects of water-soluble polymers utilized in high temperature environment are explored.
  • 加载中
    1. [1]

      [1] 严瑞瑄. 水溶性高分子. 北京: 化学工业出版社, 1998:105~106.

    2. [2]

      [2] 王中华. 石油钻探技术, 2009, 37(3): 1~7.

    3. [3]

      [3] 辛军, 郭建春, 赵金洲等. 钻井液与完井液, 2009, 26(6): 49~52.

    4. [4]

      [4] 蒋婵杰, 潘春跃, 黄可龙. 高分子通报, 2001, (3): 64~69.

    5. [5]

      [5] D A Z Wever, F Picchioni, A A Broekhuis. Prog. Polym. Sci., 2011, 36(11): 1558~1628.

    6. [6]

      [6] D ChunStandnes, I Skjevrak. J. Petrol. Sci. Eng., 2014, 122: 761~775.

    7. [7]

      [7] W M Leung, D E Axelson, J D van Dyke. J. Polym. Sci. Part A, Polym. Chem., 1987, 25(7): 1825~1846.

    8. [8]

      [8] M H Yang. Polym. Test., 1998, 17(3): 191~198.

    9. [9]

      [9] S Mukherjee, M H Mondal, M Mukherjee et al. Macromolecules, 2009, 42(20): 7889~7896.

    10. [10]

      [10] Y A Aggour. Polym. Degrad. Stab., 1994, 44(1): 71~73.

    11. [11]

      [11] L L Xu, L X Che, J Zheng et al. RSC Adv., 2014, 4(63): 33269~33278.

    12. [12]

      [12] M Silva, E R Dutra, V Mano et al. Polym. Degrad. STab., 2000, 67(3): 491~495.

    13. [13]

      [13] C D Vlad, M V Dinu, S Dragan. Polym. Degrad. Stab., 2003, 79(1): 153~159.

    14. [14]

      [14] N B Shukla, G Madras. J. Appl. Polym. Sci., 2012, 125(1): 630~639.

    15. [15]

      [15] R G Sousa, W F Magalhaes, R F S Freitas. Polym. Degrad. Stab., 1998, 61(2): 275~281.

    16. [16]

      [16] M H Yang. Polym. Test., 2000, 19(1): 85~91.

    17. [17]

      [17] N Limparyoon, N Seetapan, S Kiatkamjornwong. Polym. Degrad. Stab., 2011, 96(6): 1054~1063.

    18. [18]

      [18] S Shin, Y I Cho. KSME Int. J., 1998, 12(2):267~273.

    19. [19]

      [19] V F Kurenkov, P V Trofimov, A V Kurenkov et al. Russ. J. Appl. Chem., 2005, 78(78): 995~999.

    20. [20]

      [20] B I Choi, M S Jeong, K S Lee. Polym. Degrad. Stab., 2014, 110: 225~231.

    21. [21]

      [21] H Kheradmand, J Francois, V Plazanet. Polymer, 1988, 29(5): 860~870.

    22. [22]

      [22] Q Ma, P J Shuler, C W Aften et al. Polym. Degrad. Stab., 2015, 121: 69~77.

    23. [23]

      [23] W O Parker Jr, A Lezzi. Polymer, 1993, 34(23): 4913~4918.

    24. [24]

      [24] J Cao, Y Tan, Y Che et al. J. Polym. Res., 2011, 18(2): 171~178.

    25. [25]

      [25] M C Mcgaugh, S Kottle. J. Polym. Sci. Part B: Polym. Lett., 1967, 5(9): 817~820.

    26. [26]

      [26] A Eisenberg, T Yokoyama, E Sambalido. J. Polym. Sci. Part A: Polym. Chem., 1969, 7(7): 1717~1728.

    27. [27]

      [27] F X Roux, R Audebert, C Quivoron. Eur. Polym. J., 1973, 9(8): 815~825.

    28. [28]

      [28] A Gurkaynak, F Tubert, J Yang et al. J. Polym. Sci. Part A: Polym. Chem., 1996, 34(3): 349~355.

    29. [29]

      [29] L Lepine, R Gilbert. Polym. Degrad. Stab., 2002, 75(2): 337~345.

    30. [30]

      [30] N B Shukla, N Daraboina, G Madras. Polym. Degrad. Stab., 2009, 94(8): 1238~1244.

    31. [31]

      [31] Y Huang, J Lu, C Xiao. Polym. Degrad. Stab., 2007, 92(6): 1072~1081.

    32. [32]

      [32] N P Bayramgil. Polym. Degrad. Stab., 2008, 93(8): 1504~1509.

    33. [33]

      [33] L Ruiz-Rubio, J L Vilas, M Rodriguez et al. Polym. Degrad. Stab., 2014, 109:147~153.

    34. [34]

      [34] S Dubinsky, G S Grader, G E Shter et al. Polym. Degrad. Stab., 2004, 86(1): 171~178.

    35. [35]

      [35] 江献财, 董海亚, 谢静思等. 高分子通报, 2010, (10): 38~45.

    36. [36]

      [36] B J Holland, J N Hay. Polymer, 2001, 42(16): 6775~6783.

    37. [37]

      [37] P Thomas, J P Guerbois, G Russell et al. J. Therm. Anal. Calorim., 2001, 64(2): 501~508.

    38. [38]

      [38] P Zheng, X K Ling. Polym. Degrad. Stab., 2007, 92: 1061~1071.

    39. [39]

      [39] A Uda, S Morita, Y Ozaki. Polymer, 2013, 54(8): 2130~2137.

    40. [40]

      [40] H Kaczmarek, A Podgorski. Polym. Degrad. Stab., 2007, 92(6): 939~946.

    41. [41]

      [41] H Lu, C A Wilkie, M Ding et al. Polym. Degrad. Stab., 2011, 96(5): 885~891.

    42. [42]

      [42] L Dulog, G Storck. Makromol. Chem., 1966, 91(1):50~73.

    43. [43]

      [43] J Glastrup. Polym. Degrad. Stab., 1996, 52(3): 217~222.

    44. [44]

      [44] L Yang, F Heatley, T G Blease. Eur. Polym. J., 1996, 32(5): 535~547.

    45. [45]

      [45] O A Mkhatresh, F Heatley. Macromol. Chem. Phys., 2002, 203(16): 2273~2280.

    46. [46]

      [46] G Gallet, S Carroccio, P Rizzarelli et al. Polymer, 2002, 43: 1081~1094.

    47. [47]

      [47] K Gjurova, C Uzov, A Popov et al. J. Appl. Polym. Sci., 1999, 74(14): 3324~3330.

  • 加载中
    1. [1]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    2. [2]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    3. [3]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    4. [4]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    5. [5]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    6. [6]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    7. [7]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    8. [8]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    9. [9]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    10. [10]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    11. [11]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    12. [12]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    13. [13]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    14. [14]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    15. [15]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    16. [16]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    17. [17]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    18. [18]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    19. [19]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    20. [20]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

Metrics
  • PDF Downloads(0)
  • Abstract views(465)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return