Citation: Wang Xinyi, Yang Xiaogang, Li Bin. Progress in Preparation Methods and Applications of Polyaniline Composites[J]. Chemistry, ;2016, 79(8): 707-713. shu

Progress in Preparation Methods and Applications of Polyaniline Composites

  • Corresponding author: Yang Xiaogang, 
  • Received Date: 22 January 2016
    Available Online: 18 March 2016

    Fund Project:

  • Composite material is a multi-phase material prepared by two or more kinds of materials with different properties, which shows better or more performances than the each component. As the most promising conductive polymer material, attention is widely paid to the research of polyaniline composites at home and abroad. In this paper, the preparation methods of polyaniline composites mainly including in situ chemical polymerization method, direct blend method, electrochemistry method, layer-by-layer assembly method and so on are reviewed. The application performances of polyaniline composites in the fields of electrode, conduction, anticorrosion, sensing, separation, catalysis etc are discussed. At last, the development trend of the studies and applications of polyaniline composites in the future was prospected.
  • 加载中
    1. [1]

      [1] A G MacDiarmid, J C Chiang, M Halpern et al. Mol. Cryst. Liq. Cryst., 1985, 121: 173~180.

    2. [2]

      [2] A F Diaz, J A Logan. J. Electroanal. Chem. Interf. Electrochem., 1980, 111(1): 111~114.

    3. [3]

      [3] A G MacDiarmid, J C Chiang, W Huang et al. Mol. Cryst. Liq. Cryst., 1985, 125: 309~314.

    4. [4]

      [4] D W Deberry. J. Electrochem. Soc., 1985, 132(5): 1022~1026.

    5. [5]

      [5] M R Anderson, B R Mattes, H Reiss et al. Science, 1991, 252: 1412~1415.

    6. [6]

      [6] A Z Sadek, W Wlodarshi, K Kalantar-Zadeh et al. Sensor. Actuat. A, 2007, 139(1-2): 53~57.

    7. [7]

      [7] V Ponnuswamy, S Ashokan, P Jayamurugan et al. Optik, 2015, 126: 19~23.

    8. [8]

      [8] S Ashokan, V Ponnuswamy, P Jayamurugan. J. Alloy. Compd., 2015, 646: 40~48.

    9. [9]

      [9] 胡凡. 湖北大学硕士学位论文, 2012.

    10. [10]

      [10] S P Mu, H Y Xie, W Wang et al. Appl. Surf. Sci., 2015, 353: 608~614.

    11. [11]

      [11] J G Zhang, H P Bi, G Y He et al. J. Environ. Chem. Eng., 2014, 2: 952~957.

    12. [12]

      [12] L Wei, Q Chen, Y J Gu. J. Alloy. Compd., 2010, 501: 313~316.

    13. [13]

      [13] K He, M Li, L J Guo. Int. J. Hydrogen Energy, 2012, 37: 755~759.

    14. [14]

      [14] 王晓宇. 哈尔滨工业大学硕士学位论文, 2009.

    15. [15]

      [15] F Ran, Y L Yang, L Zhao et al. J. Energ. Chem., 2015, 24: 388~393.

    16. [16]

      [16] Z F Li, F D Blum, M F Bertino et al. Sensor. Actuat. B, 2012, 161: 390~395.

    17. [17]

      [17] K Mohanraju, V Sreejith, R Ananth et al. J. Power Sources, 2015, 284: 383~391.

    18. [18]

      [18] M Yaldagard, M Jahanshahi, N Seghatoleslami. Appl. Surf. Sci., 2014, 317: 496~504.

    19. [19]

      [19] P Kunzo, P Lobotka, M Micusik et al. Sensor. Actuat. B, 2012, 171~172: 838~845.

    20. [20]

      [20] 苏宁, 马荣华, 高垒等. 化学试剂, 2015, 37(4): 293~297, 334.

    21. [21]

      [21] Q H Zhang, S H Wang, D J Chen et al. Synth. Met., 2003, 135~136: 481~482.

    22. [22]

      [22] T Siva, K Kamaraj, S Sathiyanarayanan. Prog. Org. Coat., 2014, 77: 1095~1103.

    23. [23]

      [23] A Olad, M Barati, S Behboudi. Prog. Org. Coat., 2012, 74: 221~227.

    24. [24]

      [24] Y Shen, Q Zhao, X Y Li et al. J. Hazard. Mater., 2012, 241~242: 472~477.

    25. [25]

      [25] T H Qazi, R Rai, D Dippold et al. Acta Biomater., 2014, 10: 2434~2445.

    26. [26]

      [26] 项草.东华大学硕士学位论文, 2014.

    27. [27]

      [27] M Babaiee, M Pakshir, B Hashemi. Synth. Met., 2015, 199: 110~120.

    28. [28]

      [28] E T Vilela, R C S Carvalho, S Y Neto et al. J. Electroanal. Chem., 2015, 752: 75~81.

    29. [29]

      [29] J Luo, Q Ma, H H Gu et al. Electrochim. Acta, 2015, 173: 184~192.

    30. [30]

      [30] A Barros, M Ferreira, C J L Constantino et al. Synth. Met., 2014, 197: 119~125.

    31. [31]

      [31] F Ahmed, S Kumar, N Arshi et al. Thin Solid Films, 2011, 519: 8375~8378.

    32. [32]

      [32] M Hezarjaribi, M Jahanshani, A Rahimpour et al. Appl. Surf. Sci., 2014, 295: 144~149.

    33. [33]

      [33] A J Kajekar, B M Dodamani, A M Isloor et al. Desalination, 2015, 365: 117~125.

    34. [34]

      [34] 杨小刚. 中国科学院研究生院博士学位论文, 2008.

    35. [35]

      [35] W Z Wang, J H Xu, L Zhang et al. Catal. Today, 2014, 224: 147~153.

    36. [36]

      [36] Z P Cui, J Qi, X X Xu. Inorg. Chem. Commun., 2013, 35: 260~264.

    37. [37]

      [37] Q Chen, Q Q He, M M Lv et al. Appl. Surf. Sci., 2014, 311: 230~238.

    38. [38]

      [38] Q Z Wang, J Hui, J J Li et al. Appl. Surf. Sci., 2013, 283: 577~583.

    39. [39]

      [39] M F Nsib, N Naffati, A Rayes et al. Mater. Res. Bull., 2015, 70: 530~538.

    40. [40]

      [40] R Sasikala, A P Gaikwad, O D Jayakumar et al. Colloid. Surf. A, 2015, 481: 485~492.

    41. [41]

      [41] D W Zhang, J Li, J B Zheng. Mater. Lett., 2013, 93: 99~102.

    42. [42]

      [42] M M R Khan, Y K Wee, W A K Mahmood. Synth. Met., 2012, 162: 1065~1072.

    43. [43]

      [43] J H Hong, Z J Pan, M Yao et al. Synth. Met., 2014, 193: 117~124.

    44. [44]

      [44] L Wang, Y Hang, C Li et al. Synth. Met., 2014, 198: 300~307.

    45. [45]

      [45] J H Tang, L Ma, N Tian et al. Mater. Sci. Eng. B, 2014, 186: 26~32.

    46. [46]

      [46] L Liu, H Zhang, J C Li et al. Mater. Res. Bull., 2014, 53: 58~64.

    47. [47]

      [47] M Wang, G B Ji, B S Zhang et al. J. Magn. Magn. Mater., 2015, 377: 52~58.

    48. [48]

      [48] H Xu, J L Li, Z J Peng et al. Electrochim. Acta, 2013, 90: 393~399.

    49. [49]

      [49] K Gopalakrishnan, S Sultan, A Govindaraj et al. Nano Energy, 2015, 12: 52~58.

    50. [50]

      [50] Q Chen, R Y Hong. Ceram. Int., 2015, 41: 2533~2542.

    51. [51]

      [51] H M Ding, H Jiang, Z J Zhu et al. Electrochim. Acta, 2015, 157: 205~210.

    52. [52]

      [52] S R Takpire, S A Waghuley. Mater. Lett., 2015, 150: 9~11.

    53. [53]

      [53] B C B Nath, B Gogoi, M Boruah et al. Electrochim. Acta, 2014, 146: 106~111.

    54. [54]

      [54] L Fang, B Liang, G Yang et al. Biosens. Bioelectron., 2014, 56: 91~96.

    55. [55]

      [55] R Rawal, S Chawla, Devender et al. Enzyme Microb. Tech., 2012, 51: 179~185.

    56. [56]

      [56] B A Bhanvase, N S Darda, N C Veerkar et al. Ultrason. Sonochem., 2015, 24, 87~97.

    57. [57]

      [57] Z Y Pang, J P Fu, L Luo et al. Colloid. Surf. A, 2014, 461: 113~118.

    58. [58]

      [58] X M Li, X Du, Z D Wang et al. J. Electroanal. Chem., 2014, 717~718: 69~77.

    59. [59]

      [59] S B Teli, S Molina, E G Calvo et al. Desalination, 2012, 299: 113~122.

    60. [60]

      [60] S M Hosseini, F Jeddi, M Nemati et al. Desalination, 2014, 341: 107~114.

    61. [61]

      [61] Y M Zhang, L D Zou, B P Ladewig et al. Desalination, 2015, 362: 59~67.

    62. [62]

      [62] J Q Xu, Y Q Zhang, D Q Zhang et al. Prog. Org. Coat., 2015, 88: 84~91.

    63. [63]

      [63] C H Chang, T C Huang, C W Peng et al. Carbon, 2012, 50: 5044~5051.

    64. [64]

      [64] Q J Yu, J M Xu, J Liu et al. Appl. Surf. Sci., 2012, 263: 532~535.

    65. [65]

      [65] 汪晓芹, 徐金鑫, 黄大庆等. 材料工程, 2014, 11: 90~96.

    66. [66]

      [66] P Modak, S B Kondawar, D V Nandanwar. Proc. Mater. Sci., 2015, 10: 588~594.

    67. [67]

      [67] L L Chen, Y Zhai, H Y Ding et al. Composites: Part B, 2013, 45: 111~116.

    68. [68]

      [68] Y Zhao, H L Chen, J Li et al. J. Colloid Interf. Sci., 2015, 450: 189~195.

    69. [69]

      [69] X Y Han, L G Gai, H H Jiang et al. Synth. Met., 2013, 171: 1~6.

    70. [70]

      [70] P Daraei, S S Madaeni, N Ghaemi et al. J. Membr. Sci., 2012, 415~416: 250~259.

    71. [71]

      [71] Q Zhang, X Du, X L Ma et al. J. Hazard. Mater., 2015, 289: 91~100.

  • 加载中
    1. [1]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    2. [2]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    3. [3]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    4. [4]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    5. [5]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    6. [6]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    7. [7]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    8. [8]

      Ruolin CHENGYue WANGXiyao NIUHuagen LIANGLing LIUShijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424

    9. [9]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    13. [13]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    14. [14]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    15. [15]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

    16. [16]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    18. [18]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    19. [19]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    20. [20]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

Metrics
  • PDF Downloads(1)
  • Abstract views(330)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return