Citation: Sun Mojie, Zhao Zhihai, Chen Hongmei, Nie Fuqiang. Research Progress and Prospective of Synthesizing Carbon Quantum Dots[J]. Chemistry, ;2016, 79(8): 691-698. shu

Research Progress and Prospective of Synthesizing Carbon Quantum Dots

  • Corresponding author: Chen Hongmei,  Nie Fuqiang, 
  • Received Date: 24 December 2015
    Available Online: 3 March 2016

    Fund Project:

  • Carbon quantum dots (CQDs) possess excellent physical, chemical and biological properties, such as aqueous dispersibility, low cytotoxicity and high resistance to chemical and photo bleaching, and it has gained wide attention and application in chemistry, biomedicine, sensormetrics and optoelectronics. In this review, latest progress of CQDs synthesis was reported, the top-down (arc discharge, laser ablation and electrochemical oxidation) and bottom-up (chemical oxidation, thermal decomposition and microwave pyrolysis) methods for preparing CQDs were emphasized on especially. Advantages and disadvantages of these strategies were discussed through comprehensive analysis and specific comparison of their distinct characteristics, utilization factors of carbon precursor, reaction conditions, size distributions of CQDs, fluorescence properties and application situations. Meanwhile, based on the principle of microreactor, reversed micelle and mesoporous material were introduced in size-controlled synthesizing CQDs. Moreover, microfluidic chips show green safety, efficient and controllable superiority to macrosystem. Combined with recent progress of synthesizing CQDs with microfluidic system, it would be further successfully applied to the preparing of CQDs in the near future.
  • 加载中
    1. [1]

      [1] X Y Xu, R Ray, Y L Gu et al. J. Am. Chem. Soc., 2004, 126(40): 12736~12737.

    2. [2]

      [2] S N Baker, G A Baker. Angew. Chem. Int. Ed., 2010, 49(38): 6726~6744.

    3. [3]

      [3] S Y Lim, W Shen, Z Gao. Chem. Soc. Rev., 2015, 44(1): 362~381.

    4. [4]

      [4] Y Sha, J Lou, S Bai et al. Mater. Res. Bull., 2013, 48(4): 1728~1731.

    5. [5]

      [5] W Kong, H Wu, Z Ye et al. J. Lumin., 2014, 148: 238~242.

    6. [6]

      [6] Z Huang, F Lin, M Hu et al. J. Lumin., 2014,151: 100~105.

    7. [7]

      [7] B Wang, S Zhuo, L Chen et al. Spectrochim. Acta A, 2014, 131: 384~387.

    8. [8]

      [8] H Hamishehkar, B Ghasemzadeh, A Naseri et al. Spectrochim. Acta A, 2015, 150: 934~939.

    9. [9]

      [9] J Yao, M Yang, Y Duan. Chem. Rev., 2014, 114(12):6130~6178.

    10. [10]

      [10] W Wang, L Cheng, W Liu. Sci. China Chem., 2014, 57(4): 522~539.

    11. [11]

      [11] Y Zhu, X Ji, C Pan et al. Energ. Environ. Sci., 2013, 6(12): 3665~3675.

    12. [12]

      [12] Y Q Zhang, D K Ma, Y G Zhang et al. Nano Energy, 2013, 2(5): 545~552.

    13. [13]

      [13] W Kwon, S Do, J Lee et al. Chem. Mater., 2013, 25(9): 1893~1899.

    14. [14]

      [14] R Liu, H Huang, H Li et al. ACS Catalysis, 2014, 4(1): 328~336.

    15. [15]

      [15] H Li, R Liu, W Kong et al. Nanoscale, 2014, 6(2): 867~873.

    16. [16]

      [16] M Pumera. Chem. Commun., 2011, 47(20): 5671~5680.

    17. [17]

      [17] K S Krishna, Y Li, S Li et al. Adv. Drug Deliver. Rev., 2013, 65(11-12): 1470~1495.

    18. [18]

      [18] A Knauer, J M Koehler. Nanotechnol. Rev., 2014, 3(1): 5~26.

    19. [19]

      [19] P R Makgwane, S S Ray. J. Nanosci. Nanotechno., 2014, 14(2): 1338~1363.

    20. [20]

      [20] M Bottini, C Balasubramanian, M I Dawson et al. J. Phys. Chem. B, 2006, 110(2): 831~836.

    21. [21]

      [21] Y P Sun, B Zhou, Y Lin et al. J. Am. Chem. Soc., 2006, 128(24): 7756~7757.

    22. [22]

      [22] S L Hu, K Y Niu, J Sun et al. J. Mater. Chem., 2009, 19(4): 484~488.

    23. [23]

      [23] S T Yang, L Cao, P G Luo et al. J. Am. Chem. Soc., 2009, 131(32): 11308~11309.

    24. [24]

      [24] S T Yang, X Wang, H Wang et al. J. Phy. Chem. C, 2009, 113(42): 18110~18114.

    25. [25]

      [25] H Li, X He, Z Kang et al. Angew. Chem., 2010, 49(26): 4430~4434.

    26. [26]

      [26] Y Hou, Q Lu, J Deng et al. Anal. Chim. Acta, 2015, 866: 69~74.

    27. [27]

      [27] X Shao, H Gu, Z Wang et al. Anal. Chem., 2013, 85(1): 418~425.

    28. [28]

      [28] K Qu, J Wang, J Ren et al. Chem. Eur. J., 2013, 19(22): 7243~7249.

    29. [29]

      [29] Z Qian, J Ma, X Shan et al. Chem. Eur. J., 2014, 20(8): 2254~2263.

    30. [30]

      [30] D Mosconi, D Mazzier, S Silvestrini et al. Acs Nano, 2015, 9(4): 4156~4164.

    31. [31]

      [31] Y Dong, N Zhou, X Lin et al. Chem. Mater., 2010, 22(21): 5895~5899.

    32. [32]

      [32] Y Liu, C Y Liu, Z Y Zhang. J. Colloid Interf. Sci., 2011, 356(2): 416~421.

    33. [33]

      [33] P C Hsu, H T Chang. Chem. Commun., 2012, 48(33): 3984~3986.

    34. [34]

      [34] L Tian, D Ghosh, W Chen et al. Chem. Mater., 2009, 21(13): 2803~2809.

    35. [35]

      [35] Z A Qiao, Y Wang, Y Gao et al. Chem. Commun., 2010, 46(46): 8812~8814.

    36. [36]

      [36] S Sahu, B Behera, T K Maiti et al. Chem. Commun., 2012, 48(70): 8835~8837.

    37. [37]

      [37] F Nawaz, L Wang, L F Zhu et al. Chem. Res. Chin. Univer., 2013, 29(3): 401~403.

    38. [38]

      [38] J Gu, W Wang, Q Zhang et al. RSC Adv., 2013, 3(36): 15589~15591.

    39. [39]

      [39] S Zhu, Q Meng, L Wang et al. Angew. Chem. Int. Ed., 2013, 52(14): 3953~3957.

    40. [40]

      [40] S K Bhunia, A Saha, A R Maity et al. Sci. Reports, 2013, 3: 1473.

    41. [41]

      [41] F Li, G Wang, H Li et al. Mater. Lett., 2014, 122: 352~354.

    42. [42]

      [42] J Wei, X D Li, H Z Wang et al. J. Inorg. Mater., 2015, 30(9): 925~930.

    43. [43]

      [43] X Shan, L Chai, J Ma et al. Analyst, 2014, 139(10): 2322~2325.

    44. [44]

      [44] X Jia, J Li, E Wang. Nanoscale, 2012, 4(18): 5572~5575.

    45. [45]

      [45] H Zhu, X Wang, Y Li et al. Chem. Commun., 2009, (34): 5118~5120.

    46. [46]

      [46] Y Liu, N Xiao, N Gong et al. Carbon, 2014, 68: 258~264.

    47. [47]

      [47] J Wang, C Cheng, Y Huang et al. J. Mater. Chem. C, 2014, 2(25): 5028~5035.

    48. [48]

      [48] Q Wang, H Zheng, Y Long et al. Carbon, 2011, 49(9): 3134~3140.

    49. [49]

      [49] Z F Ding, B M Quinn, S K Haram et al. Science, 2002, 296(5571): 1293~1297.

    50. [50]

      [50] N Myung, Z F Ding, A J Bard. Nano Lett., 2002, 2(11): 1315~1319.

    51. [51]

      [51] Y Bae, N Myung, A J Bard. Nano Lett., 2004, 4(6): 1153~1161.

    52. [52]

      [52] H Jiang, H Ju. Anal. Chem., 2007, 79(17): 6690~6696.

    53. [53]

      [53] W Kwon, S W Rhee. Chem. Commun., 2012, 48(43): 5256~5258.

    54. [54]

      [54] J Shen, Y Zhu, X Yang et al. Chem. Commun., 2012, 48(31): 3686~3699.

    55. [55]

      [55] J Zong, Y Zhu, X Yang et al. Chem. Communi., 2011, 47(2): 764~766.

    56. [56]

      [56] Y Wang, L Dong, R Xiong et al. J. Mater. Chem. C, 2013, 1(46): 7731~7735.

    57. [57]

      [57] X Guo, C F Wang, Z Y Yu et al. Chem. Commun., 2012, 48(21): 2692~2694.

    58. [58]

      [58] B Zhu, S Sun, Y Wang et al. J. Mater. Chem. C, 2013, 1(3): 580~586.

    59. [59]

      [59] J Jin, L Dong, K Zhang et al. Chin. J. Org. Chem., 2012, 32(1): 201~209.

    60. [60]

      [60] K Jahnisch, V Hessel, H Lowe et al. Angew. Chem., 2004, 43(4): 406~446.

    61. [61]

      [61] V K Lamer. Ind. Eng. Chem., 1952, 44(6):1270~1277.

    62. [62]

      [62] J Puigmarti-Luis, D Schaffhauser, B R Burg et al. Adv. Mater., 2010, 22(20): 2255~2259.

    63. [63]

      [63] J Leem, H W Kang, S H Ko et al. Nanoscale, 2014, 6(5): 2895~2901.

    64. [64]

      [64] Q Fu, G Ran, W Xu. RSC Adv., 2015, 5(47): 37512~37516.

    65. [65]

      [65] G Ran, Q Fu, W Xu. RSC Adv., 2015, 5(19): 14740~14746.

    66. [66]

      [66] S Gomez-de Pedro, M Puyol, J Alonso-Chamarro. Nanotechnology, 2010, 21(41): 415603.

    67. [67]

      [67] M J Hossain, H Tsunoyama, M Yamauchi et al. Catal. Today, 2012, 183(1): 101~107.

    68. [68]

      [68] A M Karim, N Al Hasan, S Ivanov et al. J. Phys. Chem. C, 2015, 119(23): 13257~13267.

    69. [69]

      [69] Y Shu, P Jiang, D W Pang et al. Nanotechnology, 2015, 26(27): 275701.

    70. [70]

      [70] Y Lu, L Zhang, H Lin. Chem. Eur. J., 2014, 20(15): 4246~4250.

    71. [71]

      [71] W Dong, S Zhou, Y Dong et al. Luminescence, 2015, 30(6): 867~871.

    72. [72]

      [72] Q Dou, X Fang, S Jiang et al. RSC Adv., 2015, 5(58): 46817~46822.

    73. [73]

      [73] S Gomez-de Pedro, A Salinas-Castillo, M Ariza-Avidad et al. Nanoscale, 2014, 6(11): 6018~6024.

  • 加载中
    1. [1]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    2. [2]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    3. [3]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    4. [4]

      Lingqi Zhang Hairong Huang Jialin Li Li Ji Yufan Pan Meiling Ye Cuixue Chen Shunü Peng . 桂花碳量子点的绿色制备及科普应用方案. University Chemistry, 2025, 40(8): 298-306. doi: 10.12461/PKU.DXHX202409138

    5. [5]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    6. [6]

      Yuecheng ZHANGFan YANGShiyu ZHANGChengjun MARui TIANXuehua SUNHaoyu LILingbo SUNHongyan MA . B-doped carbon quantum dots with long-afterglow room-temperature phosphorescence: Applications in information encryption and humidity sensing. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1361-1370. doi: 10.11862/CJIC.20240415

    7. [7]

      Chengcheng Si Linshan Chai Huiyuan Liu Liye Sun Shijian Cheng Hailing Li Wenyun Wang Fang Liu Qing Feng Min Liu . Harry Potter China Tour Themed Innovative Science Popularization Experiment: Chemistry Magic Meets the Real World at Wuhan Station. University Chemistry, 2024, 39(9): 283-287. doi: 10.12461/PKU.DXHX202401069

    8. [8]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    9. [9]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    10. [10]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    11. [11]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    12. [12]

      Haifeng Ma Xiaocong Tian Fengbin Wang Zhonghua Xi QingWang . Design of College Chemistry Experiment Based on Product Quality Control: Taking “Optimization of Ferrous Fumarate Synthesis Process” as an Example. University Chemistry, 2025, 40(7): 321-327. doi: 10.12461/PKU.DXHX202409056

    13. [13]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    14. [14]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    15. [15]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    16. [16]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    17. [17]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    18. [18]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    19. [19]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    20. [20]

      Peifeng Su Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087

Metrics
  • PDF Downloads(21)
  • Abstract views(1047)
  • HTML views(155)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return