Citation:
Wang Yegen. Precise Expressions of End Point Error Based on Proton Balance Equation[J]. Chemistry,
;2016, 79(9): 876-879.
-
In volumetric analysis, error of titration determines the reliability of the analysis method. According to the proton balance equation, the precise expressions of the end point error can be derived. The expressions were calculated using the concentration of the substance at the beginning of the titration rather than the end point. The expressions were calculated with the pH at the end point of titration, and not need to calculate the pH at stoichiometric point. The expressions are universal, which can effectively reduce the difficulty of learning and memory, and improve the accuracy of the calculation results.
-
-
-
[1]
[1] 武汉大学主编. 分析化学(上册).第5版.北京:高等教育出版社, 2006:147~152.
-
[2]
[2] 陈国松, 卜洪忠, 边敏等.化学通报, 2015, 78(6):573~576.
-
[3]
[3] 闭凤丽, 尹华勤, 甘峰. 化学通报, 2015, 78(9):859~863.
-
[4]
[4] 邵利民. 化学通报, 2012, 75(10):952~956.
-
[5]
[5] 任树林, 齐广才, 马红燕. 延安大学学报(自然科学版), 2011, 30(3):68~70.
-
[1]
-
-
-
[1]
Limin Shao , Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086
-
[2]
Wenhui Li , Changshuo Zhu , Xinyu Cui , Chenfei Zhao , Lina Qiu , Yan Li , Chuandong Wu , Min Yang , Yuan Zhuang . Visual Determination of Acid-Base Titration Endpoints Using Smartphone APP-Based Analysis. University Chemistry, 2025, 40(7): 328-335. doi: 10.12461/PKU.DXHX202409062
-
[3]
Tiejun Su . The Construction and Application of the Calculation Formula for Endpoint Error in Precipitation Titration: A Case Study of the Mohr Method. University Chemistry, 2024, 39(11): 384-387. doi: 10.12461/PKU.DXHX202402039
-
[4]
Na Li , Limin Shao . Deduction of the General Formula of the Inverse Function of the Titration Curve. University Chemistry, 2025, 40(3): 390-401. doi: 10.12461/PKU.DXHX202409134
-
[5]
Lei Qin , Kai Guo . Application of Generative Artificial Intelligence in the Simulation of Acid-Base Titration Images. University Chemistry, 2025, 40(9): 11-18. doi: 10.12461/PKU.DXHX202408123
-
[6]
Juan Hou , Chen Zhou , Jing Sun . Teaching Design of the Classical Analytical Chemistry Content Based on Logical and Innovative Thinking: A Case Study of the Application of Acid-Base Titration Method. University Chemistry, 2024, 39(4): 221-226. doi: 10.3866/PKU.DXHX202310023
-
[7]
Jiantao Zai , Hongjin Chen , Xiao Wei , Li Zhang , Li Ma , Xuefeng Qian . The Learning-Centered Problem-Oriented Experimental Teaching. University Chemistry, 2024, 39(4): 40-47. doi: 10.3866/PKU.DXHX202309023
-
[8]
Chun-Lin Sun , Yaole Jiang , Yu Chen , Rongjing Guo , Yongwen Shen , Xinping Hui , Baoxin Zhang , Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096
-
[9]
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
-
[10]
Liping Guo , Hongmei Wang , Li Song , Mengli Li , Haiyang Guo . Reform and Practice of Exercise Lecture in Physical Chemistry Based on the Project-Driven Learning. University Chemistry, 2025, 40(7): 62-70. doi: 10.12461/PKU.DXHX202409102
-
[11]
Shuangshuang Long , Jingjing Liu , Xiaojuan Wang . Exploring the Application of Generative AI in Analytical Chemistry Education. University Chemistry, 2025, 40(9): 25-33. doi: 10.12461/PKU.DXHX202408096
-
[12]
Lingli Wu , Shengbin Lei . Generative AI-Driven Innovative Chemistry Teaching: Current Status and Future Prospects. University Chemistry, 2025, 40(9): 206-219. doi: 10.12461/PKU.DXHX202503069
-
[13]
Ruming Yuan , Laiying Zhang , Xiaoming Xu , Pingping Wu , Gang Fu . Generative Artificial Intelligence Empowering Physical Chemistry Teaching. University Chemistry, 2025, 40(9): 238-244. doi: 10.12461/PKU.DXHX202504069
-
[14]
Hengrui Zhang , Xijun Xu , Xun-Lu Li , Xiangwen Gao . Applications of Generative Artificial Intelligence in Battery Research: Current Status and Prospects. Acta Physico-Chimica Sinica, 2025, 41(10): 100115-0. doi: 10.1016/j.actphy.2025.100115
-
[15]
Xiaohui Li , Ze Zhang , Jingyi Cui , Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027
-
[16]
Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073
-
[17]
Changsheng Lu . Discovering-and-Sharing Model: a Case of the Inorganic Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 78-83. doi: 10.12461/PKU.DXHX202408028
-
[18]
Yuhao Chen , Zhuo Cheng , Qijun Hu , Jian Pei . 酸碱理论的发展历程. University Chemistry, 2025, 40(8): 368-375. doi: 10.12461/PKU.DXHX202412001
-
[19]
Weihua Jiang , Yongsheng Zhou , Qiaoqiao Teng . Progressive Teaching Model in the Practice and Exploration of Ideological and Political Education in Laboratory Courses: Taking the Organic Chemistry Experiment “Synthesis of Aspirin” as an Example. University Chemistry, 2024, 39(2): 99-104. doi: 10.3866/PKU.DXHX202306028
-
[20]
Qizhi Yao , Gu Jin , Pingping Zhu . Modular Analytical Chemistry Experimental Teaching Based on “Comprehensive + Exploratory” Experiments: “One Student, One Plan”, Individualized Experimental Teaching Method. University Chemistry, 2024, 39(3): 143-148. doi: 10.3866/PKU.DXHX202309071
-
[1]
Metrics
- PDF Downloads(4)
- Abstract views(629)
- HTML views(84)
Login In
DownLoad: