Citation: Song Fengdan, Li Yuanjin, Yue Jiaqi, Qi Suitao, Yang Bolun. Preparation of Ni Nano Catalysts and the Activity for the Electrocatalytic Oxidation of Glucose[J]. Chemistry, ;2016, 79(9): 822-827. shu

Preparation of Ni Nano Catalysts and the Activity for the Electrocatalytic Oxidation of Glucose

  • Corresponding author: Qi Suitao, 
  • Received Date: 25 January 2016
    Available Online: 20 April 2016

    Fund Project:

  • Ni/AC nano catalysts with different Ni loading on activated carbon(AC) were prepared by incipient wetness impregnation and temperature programmed reduction method. Their morphology and structure were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry was used to explore their activity for elctrocatalytic oxidation of glucose. The results showed that 20%Ni/AC/GC (Ni/AC nano catalyst was modified on a glassy carbon electrode) electrodes had a superior electrocatalytic activity for glucose oxidation. It brought a distinct and fast voltaic response in alkaline medium and the response current was significantly increased with the increase of glucose concentration. The linear response range of 20%Ni/AC/GCE was 0.2~6.5 mmol/L, the correlation coefficient was 0.999, the sensitivity was 13.15 μA/(mmol/L) and the lowest detectable limit was 35 μmol/L. It was found that the response current of 20%Ni/AC/GCE for glucose electrocatalytic oxidation could be able to reach 95% of the original current after three weeks when it was tested every three days, which indicates the Ni/AC/GCE electrode has a good stability.
  • 加载中
    1. [1]

      [1] S B Aoun, G S Bang, T Koga et al. Electrochem. Commun., 2003, 5(4):317~320.

    2. [2]

      [2] L Li, K Scott, E H Yu. J. Power. Sources, 2013, 221:1~5.

    3. [3]

      [3] Y Liu, H Teng, H Q Hou et al. Biosens. Bioelectron., 2009, 24(11):3329~3334.

    4. [4]

      [4] S H Chen, R Yuan, Y Q Chai et al. Microchim. Acta, 2013, 180(1-2):15~32.

    5. [5]

      [5] W Chen, S Cai, Q Q Ren et al. Analyst, 2012, 137:49~58.

    6. [6]

      [6] G F Wang, X P He, L L Wang et al. Microchim. Acta, 2013, 180(3-4):161~186.

    7. [7]

      [7] S Park, T D Chung, H C Kim. Anal. Chem., 2003, 75:3046~3049.

    8. [8]

      [8] M Tominaga, T Shimazoe, M Nagashima et al. Electrochem. Commun., 2005, 7(2):189~193.

    9. [9]

      [9] N Arjona, M Guerra-Balcázar, G Trejo et al. New. J. Chem., 2012, 36:2555~2561.

    10. [10]

      [10] H Y Bai, M Han, Y Z Du et al. Chem. Commun., 2010, 46:1739~1741.

    11. [11]

      [11] Y Bai, Y Y Sun, C Q Sun. Biosens. Bioelectron., 2008, 24(4):579~585.

    12. [12]

      [12] J Ryu, K Kim, H S Kim et al. Biosens. Bioelectron., 2010, 26(2):602~607.

    13. [13]

      [13] M Tominaga, T Shimazoe, M Nagashima et al. J. Electroanal. Chem., 2006, 590(1):37~46.

    14. [14]

      [14] U Gebhardt, G Luft, G J Richter. Bioelectrochem. Bioenerg., 1978, 5(4):607~624.

    15. [15]

      [15] D A Gough, F L Anderson, J Giner. Anal. Chem., 1978, 50:941~944.

    16. [16]

      [16] L Q Rong, C Yang, Q Y Qian et al. Talanta, 2007, 72(2):819~824.

    17. [17]

      [17] L M Lu, L Zhang, F L Qu et al. Biosens. Bioelectron., 2009, 25(1):218~223.

    18. [18]

      [18] C Z Zhao, C L Shao, M H Li et al. Talanta, 2007, 71(4):1769~1773.

    19. [19]

      [19] Z J Fan, B Liu, X H Liu et al. Electrochim. Acta, 2013, 109:602~608.

    20. [20]

      [20] C C Li, Y L Liu, L M Li et al. Talanta, 2008, 77(1):455~459.

    21. [21]

      [21] F Cao, S Guo, H Y Ma et al. Biosens. Bioelectron., 2011, 26(5):2756~2760.

    22. [22]

      [22] L C Jiang, W D Zhang. Biosens. Bioelectron., 2010, 25(6):1402~1407.

    23. [23]

      [23] Z Zhuang, X Su, H Yuan et al. Analyst, 2008, 133(1):126~132.

    24. [24]

      [24] M Liu, R Liu, W Chen. Biosens. Bioelectron., 2013, 45:206~212.

    25. [25]

      [25] C Guo, X Zhang, H Huo et al. Analyst, 2013, 138(22):6727~6731.

    26. [26]

      [26] A Salimi, M Roushani. Electrochem. Commun., 2005, 7:879~887.

    27. [27]

      [27] B K Jena, C R Raj. Chem. Eur. J., 2006, 12:2702~2708.

    28. [28]

      [28] R M Abdel Hameed. Biosens. Bioelectron, 2013, 47:248~257.

    29. [29]

      [29] Y M Jiang, S J Yu, J J Li et al. Carbon, 2013, 63:367~375.

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    3. [3]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    4. [4]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    5. [5]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    6. [6]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    7. [7]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    8. [8]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    9. [9]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    10. [10]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    11. [11]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    12. [12]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    13. [13]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    14. [14]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    15. [15]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

    16. [16]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    17. [17]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    18. [18]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    19. [19]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    20. [20]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

Metrics
  • PDF Downloads(0)
  • Abstract views(331)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return