Citation: Wang Junmin, Feng Tao, Hu Yandi, Tang Ranxiao. Study on the Adsorptive Property of Corncob Powder for Neutral Red[J]. Chemistry, ;2016, 79(10): 981-985. shu

Study on the Adsorptive Property of Corncob Powder for Neutral Red

  • Corresponding author: Tang Ranxiao, 
  • Received Date: 6 March 2016
    Available Online: 18 May 2016

    Fund Project:

  • The adsorption property of corncob powder for different dyes was studied, and the results showed that the cationic dyes can be effectively adsorbed on the corncob powder. The effects of adsorbent dosage, pH, concentration and temperature of the solution on the adsorption of neutral red were investigated. The resultant kinetic data were well fitted by the pseudo-second-order kinetics model. At different temperatures, the adsorption process was in accordance with both the Langmiur isotherm mode and the Freundlich isotherm mode, the value of qmax and KF were little influenced by the temperature. The result of Dubinin-Radushkevich isotherm fitting showed that the adsorption is mainly a chemical adsorption. The thermodynamics study indicated that the adsorption of neutral red on the corncob powder was spontaneous and exothermic. The existence of other electrolyte was not conducive to the adsorption.
  • 加载中
    1. [1]

      [1] G Crini. Bioresour. Technol., 2006, 97(9):1061~1085.

    2. [2]

      [2] N B H Abdelkader, A Bentouami, Z Derriche et al. Chem. Eng. J., 2011, 169(1):231~238.

    3. [3]

      [3] X G Luo, L N Zhang. J. Hazard. Mater., 2009, 171(1~3):340~347.

    4. [4]

      [4] V Rocher, J M Siaugue, V Cabuil et al. Water Res., 2008, 42(4~5):1290~1298.

    5. [5]

      [5] L Zhou, C Gao, W J Xu et al. ACS Appl. Mater. Inter., 2010, 2:1483~1491.

    6. [6]

      [6] K M Parida, S Sahu, K H Reddy et al. Ind. Eng. Chem. Res., 2011, 50(6):843~848.

    7. [7]

      [7] K P Singha, S Guptaa, A K Singh et al. Chem. Eng. J., 2010, 165(3):151~160.

    8. [8]

      [8] B Cheng, Y Le, W Q Cai. J. Hazard. Mater., 2011, 185(9):889~897.

    9. [9]

      [9] A K Mishra, T Arockiadoss, S Ramaprabhu. Chem. Eng. J., 2010, 162:1026~1034.

    10. [10]

      [10] V K Gupta. J. Environ. Manage., 2009, 90:2313~2342.

    11. [11]

      [11] A Demirbas. J. Hazard. Mater., 2009,167:1~9.

    12. [12]

      [12] M Rafatullaha, O Sulaimana, R Hashima. J. Hazard. Mater., 2010, 177:70~80.

    13. [13]

      [13] R P Han, P Han, Z H Cai et al. J. Environ. Sci., 2008, 20:1035~1041.

    14. [14]

      [14] K S Low, C K Lee. Pertanika, 1990, 13:221~228.

    15. [15]

      [15] E Guechi, O Hamdaoui. Arab. J. Chem., 2011, 05, 001.

    16. [16]

      [16] V Vadivelan, K V Kumar. J. Colloid Interf. Sci., 2005, 286:90~100.

    17. [17]

      [17] N K Amin. J. Hazard. Mater., 2009,165:52~62.

    18. [18]

      [18] S Nethaji, A Sivasamy, G Thennarasu et al. J. Hazard. Mater., 2010, 181:271~280.

    19. [19]

      [19] P Saha, S Chowdhury, S Gupta et al. Chem. Eng. J., 2010, 165:874~882.

    20. [20]

      [20] P S Kumar, S Ramalingam, C Senthamarai et al. Desalination, 2010, 261:52~60.

    21. [21]

      [21] 周露, 陈君红, 于飞等. 环境化学, 2012, 31(5):669~676.

    22. [22]

      [22] Y Safa, H N Bhatti. Desalination, 2011, 272(1~3):313~322.

    23. [23]

      [23] S Vasiliu, I Bunia, S Racovita et al. Carbohyd. Polym., 2011, 85:376~387.

    24. [24]

      [24] Q H Wu, G Y Zhao, C Feng et al. J. Chromatogr. A, 2011, 1218:7936~7942.

    25. [25]

      [25] G Mckay, H S Blair, J R Garden. J. Appl. Polym. Sci., 1982, 27:3043~3057.

    26. [26]

      [26] M S Onyango, Y Kojima, O Aoyi et al. J. Colloid. Interf. Sci., 2004, 279(2):341~350.

    27. [27]

      [27] F Helfferich. Ion Exchange. New York:McGraw-Hill Book Co, 1962.

    28. [28]

      [28] S S Tahir, N Rauf. Chemosphere, 2006, 63(11):1842~1848.

    29. [29]

      [29] S I Lyubchik, A I Lyubchik, O L Galushko et al. Physicochem. Eng. Asp., 2004, 242:151~158.

    30. [30]

      [30] R Ahamad, R Kumar, S Haseeb. Arab. J. Chem., 2012, 5:353~359.

  • 加载中
    1. [1]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    2. [2]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    3. [3]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    4. [4]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    5. [5]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    6. [6]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    7. [7]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    8. [8]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    9. [9]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    10. [10]

      Chunguang Rong Miaojun Xu Xingde Xiang Song Liu . 化学热力学熵变计算的教学探讨. University Chemistry, 2025, 40(8): 323-329. doi: 10.12461/PKU.DXHX202409146

    11. [11]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    12. [12]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    13. [13]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    14. [14]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    15. [15]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    16. [16]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    17. [17]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    18. [18]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    19. [19]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    20. [20]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

Metrics
  • PDF Downloads(0)
  • Abstract views(449)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return