Citation: Guo Jixi, Song Xianli, Guo Mingxi, Jia Dianzeng, Tong Fenglian. Preparation of MnO2/CBCNFs Composite Materials and Its Electrochemical Performance for Flexible Supercapacitor[J]. Chemistry, ;2016, 79(10): 942-946,951. shu

Preparation of MnO2/CBCNFs Composite Materials and Its Electrochemical Performance for Flexible Supercapacitor

  • Corresponding author: Jia Dianzeng, 
  • Received Date: 27 March 2016
    Available Online: 18 May 2016

    Fund Project:

  • The flexible coal based carbon nanofibers (CBCNFs) were prepared by electrospinning technique and well modified by using the low temperature plasma surface modification technology. The CBCNFs/MnO2 composite was prepared by in situ reduction reaction using plasma-modified CBCNFs as reductant to react with potassium permanganate (KMnO4). The morphology and structure of as-prepared CBCNFs/MnO2 composites were investigated by X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM, TEM). The results showed that the nanoflakes of MnO2 well coated on the CBCNFs. Furthermore, the electrochemical performance of the electrode material as flexible supercapacitor was investigated. The prepared material (CBCNFs/MnO2-2) with KMnO4/CBCNFs=2/1(mass ratio) shows good electrochemical performance. It was found that the CBCNFs/MnO2-2 electrodes showed a specific capacitance of 118 F·g-1 at a current density of 0.1 A·g-1, which is 4.5 times higher than that of the CBCNFs (26 F·g-1). The capacitance retention ratio of the CBCNFs/MnO2-2 remained 97% after 1000 cycles at a current density of 1 A·g-1.
  • 加载中
    1. [1]

      [1] Y L Shao, M F El-Kady, L J Wang et al. Chem. Soc. Rev., 2015, 44(11):3639~3665.

    2. [2]

      [2] J Bae, M K Song, Y J Park et al. Angew. Chem. Int. Ed., 2011, 50(7):1683~1687.

    3. [3]

      [3] M H Yu, T Zhai, X H Lu et al. J. Power Sources, 2013, 239:64~71.

    4. [4]

      [4] B D Assresahegn, D Bélanger. Adv. Funct. Mater., 2015., 25(43):6775~6785.

    5. [5]

      [5] G P Wang, L Zhang, and J J Zhang. Chem. Soc. Rev., 2012, 41(2):797~828.

    6. [6]

      [6] C Liu, F Li, L P Ma et al. Adv. Mater., 2010, 22(8):28~62.

    7. [7]

      [7] P Simon, Y Gogotsi. Nat. Mater., 2008,7:845~854.

    8. [8]

      [8] M Huang, F Li, F Dong et al. J. Mater. Chem. A, 2015, 3(43):21380~21423.

    9. [9]

      [9] T F Huang, Z H Qiu, D W Wu et al. Int. J. Electrochem. Sci., 2015,10:6312~6323.

    10. [10]

      [10] S J He, W Chen. J. Power Sources, 2015, 294:150~158.

    11. [11]

      [11] J H Zhang, Y H Wang, J B Zang et al. Carbon, 2012, 50(14):5196~5202.

    12. [12]

      [12] T Wang, D F Song, H Zhao et al. J. Power Sources, 2015, 274:709~717.

    13. [13]

      [13] D Zhou, H M Lin, F Zhang et al. Electrochim. Acta, 2015,161:427~435.

    14. [14]

      [14] M Sawangphruk, P Srimuk, P Chiochan et al. Carbon, 2013, 60:109~116.

    15. [15]

      [15] Y J Kang, B Kim, H Chung et al. Synth. Met., 2010, 160(23):2510~2514.

    16. [16]

      [16] H Y Zhao, L X Wang, D Z Jia et al. J. Mater. Chem. A, 2014, 2(24):9338~9344.

    17. [17]

      [17] M X Guo, J X Guo, D Z Jia et al. J. Mater. Chem. A, 2015, 3(42):21178~21184.

  • 加载中
    1. [1]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    2. [2]

      Shilong LiMing ZhaoYefei XuZhanyi LiuMian LiQing HuangXiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701

    3. [3]

      Haoting WangMengfan LuoYuzhong WangJialong YinHeng ZhangJia ZhaoBo Lai . Mn(Ⅱ) enhanced permanganate oxidation of trace organic pollutants in water: Critical role of in situ formation of colloidal MnO2. Chinese Chemical Letters, 2025, 36(6): 110348-. doi: 10.1016/j.cclet.2024.110348

    4. [4]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    6. [6]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    7. [7]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    8. [8]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    9. [9]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    10. [10]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    11. [11]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    12. [12]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    13. [13]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    14. [14]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    15. [15]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    16. [16]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    17. [17]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    18. [18]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    19. [19]

      Yijing GUHuan PANGRongmei ZHU . Applications of nickel-based metal-organic framework compounds in supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2029-2038. doi: 10.11862/CJIC.20250186

    20. [20]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(0)
  • Abstract views(527)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return