Citation: Wang Jun, Zhou Ruisha, Song Jiangfeng. Advance of the Polyoxometalates Containing Bismuth[J]. Chemistry, ;2016, 79(10): 921-928,904. shu

Advance of the Polyoxometalates Containing Bismuth

  • Corresponding author: Song Jiangfeng, 
  • Received Date: 29 February 2016
    Available Online: 12 May 2016

    Fund Project:

  • The polyoxometalates containing bismuth have received wide attentions for their structure diversities and potential applications in many fields. More than fifty polyoxometalates containing bismuth have been reported. According to the role of Bi(Ⅲ) in polyoxometalates, the complexes can be divided into four categories: (1) Bi(Ⅲ) acts as the central heteroatom; (2) Bi(Ⅲ) acts as the substituting atom; (3) Bi(Ⅲ) acts as the bridging atom; (4) Bi(Ⅲ) acts as the terminal atom. In this paper, advances in syntheses and structure aspects of them were reviewed. Meanwhile the application of polyoxometalates containing bismuth in catalysis, magnetics, optical materials, medicines and other aspects were introduced. Finally, the research prospect of them was pointed out. The synthesis, properties and development of the polyoxometalates containing bismuth can be well known through this review, which is helpful for expanding the research of polyoxometalates.
  • 加载中
    1. [1]

      [1] M Ammam. J. Mater. Chem. A, 2013, 1(21):6291~6312.

    2. [2]

      [2] H N Miras, J Yan, D L Long et al. Chem. Soc. Rev., 2012, 41(22):7403~7430.

    3. [3]

      [3] Y F Song, R Tsunashima. Chem. Soc. Rev., 2012, 41(22):7384~7402.

    4. [4]

      [4] I V Kozhevnikov. Chem. Rev., 1998, 98(1):171~198.

    5. [5]

      [5] J T Rhule, C L Hill, D A Judd et al. Chem. Rev., 1998, 98(1):327~358.

    6. [6]

      [6] J M Clemente-Juan, E Coronado. Coord. Chem. Rev., 1999, 193:361~394.

    7. [7]

      [7] D L Long, R Tsunashima, L Cronin. Angew. Chem. Int. Ed., 2010,49(10):1736~1758.

    8. [8]

      [8] Y Zhou, L Qin, C Yu et al. RSC Adv., 2014, 4(97):54928~54935.

    9. [9]

      [9] S S Wang, G Y Yang. Chem. Rev., 2015,115(11):4893~4962.

    10. [10]

      [10] Y C Wang, L Xu, N Jiang et al. CrystEngComm, 2011, 13(2):410~413.

    11. [11]

      [11] F Li, L Xu. Dalton Transac., 2011, 40(16):4024~4034.

    12. [12]

      [12] I Loose, E Droste, M Bösing et al. Inorg. Chem., 1999, 38(11):2688~2694.

    13. [13]

      [13] A R Gaspar, J A F Gamelas, D V Evtuguin et al. Green Chem., 2007, 9(7):717~730.

    14. [14]

      [14] P Souchya, M Lerya, G Herve. C. R. Acad. Sci. Paris, Ser. C, 1970, C271:1337~1340.

    15. [15]

      [15] C Y Sun, S X Liu, C L Wang et al. J. Coord. Chem., 2007, 60(5):567~579.

    16. [16]

      [16] S T Zheng, G Y Yang. Chem. Soc. Rev., 2012, 41(22):7623~7646.

    17. [17]

      [17] X Zhang, D Wang, J Dou et al. Inorg. Chem., 2006, 45(26):10629~10635.

    18. [18]

      [18] A Dolbecq, P Mialane, F Secheresse et al. Chem. Commun., 2012, 48(67):8299~8316.

    19. [19]

      [19] X Wang, A Tian, X Wang. RSC Adv., 2015, 5(51):41155~41168.

    20. [20]

      [20] L Wang, K Yu, B B Zhou et al. Dalton Transac., 2014, 43(16):6070~6078.

    21. [21]

      [21] H Liu, LXu, G Gao et al. J. Mol. Struct., 2008, 878(1):124~130.

    22. [22]

      [22] H L Wang, G L Xue, J W Wang et al. Acta Chim. Sin., 2003, 61(11):1839~1843.

    23. [23]

      [23] M Bösing, A Nöh, I Loose et al. J. Am. Chem. Soc., 1998, 120(29):7252~7259.

    24. [24]

      [24] W Zhang, S Liu, D Feng et al. J. Mol. Struct., 2009, 936(1):194~198.

    25. [25]

      [25] H Liu, C Qin, Y G Wei et al. Inorg. Chem., 2008, 47(10):4166~4172.

    26. [26]

      [26] Z H Xu, J Liu, E B Wang et al. J. Mol. Struct., 2008, 873(1):41~45.

    27. [27]

      [27] Y Kohama, H Kawaji, T Atake et al. J. Solid State Chem., 2009, 182(6):1468~1472.

    28. [28]

      [28] B Botar, T Yamase, E Ishikawa. Inorg. Chem. Commun., 2001, 4(10):551~554.

    29. [29]

      [29] B Botar, T Yamase, E Ishikawa. Inorg. Chem. Commun., 2000, 3(11):579~584.

    30. [30]

      [30] L Zeng, Y Q Chen, G C Liu et al. J. Mol.Struct., 2009, 930(1):176~179.

    31. [31]

      [31] L H Bi, M H Dickman, U Kortz. CrystEngComm, 2009, 11(6):965~966.

    32. [32]

      [32] R Copping, A J Gaunt, I May et al. Chem. Commun., 2006(36):3788~3790.

    33. [33]

      [33] H Liu, Y Liu, H Liu et al. Inorg. Chem. Commun., 2009, 12(1):1~3.

    34. [34]

      [34] F Evangelisti, P E Car, O Blacque et al. Catal. Sci. Technol., 2013, 3(12):3117~3129.

    35. [35]

      [35] K Y Cui, F Y Li, L Xu et al. Dalton Transac., 2012, 41(16):4871~4877.

    36. [36]

      [36] B Krebs, I Loose, M Bösing et al. C. R. Acad. Sci., Ser. IIc:Chim., 1998, 1(5):351~360.

    37. [37]

      [37] Y Z Wang, H H Zhang, C C Huang et al. Chin. J. Struct. Chem., 2004, 23(8):902~907.

    38. [38]

      [38] L Vilà-Nadal, S G Mitchell, D L Long et al. Dalton Transac., 2012, 41(8):2264~2271.

    39. [39]

      [39] T McGlone, C Streb, M Busquets-Fité et al. Cryst. Growth Des., 2011, 11(6):2471~2478.

    40. [40]

      [40] B Wang, G F Hou, R Q Meng et al. CrystEngComm, 2011, 13(5):1360~1365.

    41. [41]

      [41] Y Liu, B Liu, G Xue et al. Dalton Transac., 2007(33):3634~3639.

    42. [42]

      [42] S R Amanchi, A M Khenkin, Y Diskin-Posner et al. ACS Catal., 2015, 3, 3336~3341.

    43. [43]

      [43] R I Maksimovskaya, G M Maksimov. Inorg. Chem., 2001, 40(6):1284~1290.

    44. [44]

      [44] Z H Xu, X L Wang, Y G Li et al. Inorg. Chem. Commun., 2007, 10(3):276~278.

    45. [45]

      [45] Z X Zhang, M Sadakane, T Murayama et al. Inorg. Chem., 2013, 53(2):903~911.

    46. [46]

      [46] Z X Zhang, M Sadakane, T Murayama et al. Dalton Transac., 2014, 43(36):13584~13590.

    47. [47]

      [47] R Villanneau, A Proust, F Robert et al. J. Chem. Soc., Dalton Transac., 1999(3):421~426.

    48. [48]

      [48] C Bustos, D M L Carey, K Boubekeur et al. Inorg. Chim. Acta, 2010, 363(15):4262~4268.

    49. [49]

      [49] S A Adonin, E V Peresypkina, M N Sokolov et al. Inorg. Chem., 2014, 53(13):6886~6892.

    50. [50]

      [50] J Tucher, L C Nye, I Ivanovic-Burmazovic et al. Chem. Eur. J., 2012, 18(35):10949~10953.

    51. [51]

      [51] S Cao, P Zhou, J Yu. Chin. J. Catal., 2014, 35(7):989~1007.

    52. [52]

      [52] 段芳,张琴,魏取福等.化学进展,2014,26(1):30~40.

    53. [53]

      [53] N Mizuno, K Yamaguchi, K Kamata. Coord. Chem. Rev., 2005, 249(17):1944~1956.

    54. [54]

      [54] T Yamase, E Ishikawa, K Fukaya et al. Inorg. Chem., 2004, 43(25):8150~8157.

    55. [55]

      [55] A Ogata, H Yanagie, E Ishikawa et al. Br. J. Cancer, 2008, 98(2):399~409.

    56. [56]

      [56] S G Kozlova, S A Adonin, M N Sokolov et al. Inorg. Chim. Acta, 2016, 443:1~6.

  • 加载中
    1. [1]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    4. [4]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    5. [5]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    6. [6]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    7. [7]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    8. [8]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    9. [9]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    10. [10]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 2309047-0. doi: 10.3866/PKU.WHXB202309047

    11. [11]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    12. [12]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    13. [13]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    14. [14]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    15. [15]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    16. [16]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    17. [17]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    18. [18]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    19. [19]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    20. [20]

      Qianqian LiuXing DuWanfei LiWei-Lin DaiBo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-0. doi: 10.3866/PKU.WHXB202311016

Metrics
  • PDF Downloads(18)
  • Abstract views(405)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return