Citation: Xu Yan, Wang Xiaohui, Li Jing, Du Xihua, Song Ming, Zhou Jun. Preparation of Photocatalytic TiO2 via Plasma Intensification and Its Mechanism[J]. Chemistry, ;2016, 79(10): 914-920. shu

Preparation of Photocatalytic TiO2 via Plasma Intensification and Its Mechanism

  • Corresponding author: Xu Yan,  Du Xihua, 
  • Received Date: 22 March 2016
    Available Online: 18 May 2016

    Fund Project:

  • It is commonly recognized that plasma has advantages on material preparation and modification. TiO2, widely used in the research fields of solar cells and photocatalysis, is characterized by high chemical stability, higher antioxidant activity, lower production cost and so on. This paper reviews the preparation of photocatalytic TiO2 by dielectric barrier discharge (DBD) intensification, including the plasma assistant preparation of photocatalytic TiO2 thin films and the doped TiO2 by plasma, and the mechanism is analyzed. According to the research results, the photocatalytic TiO2 prepared by plasma has better uniformity and catalytic activity, which can be ascribed to the electrons with high energy. Firstly, TiO2 particles can adsorb electrons and produce electrostatic repulsive force, hindering the agglomeration of particles. Moreover, the election with high reduction capability can break the Ti-O bond, forming oxygen vacancy and enhancing its catalytic performance.
  • 加载中
    1. [1]

      [1] A Fujishima, K Honda. Nature, 1972, 238(5358):37~38.

    2. [2]

      [2] M Ni, M K H Leung, D Y C Leung et al. Renew. Sust. Energ. Rev., 2007, 11(3):401~425.

    3. [3]

      [3] J H Park, S W Kim, A J Bard. Nano Lett., 2006, 6(1):24~28.

    4. [4]

      [4] T Ohno. Water Sci. Technol., 2004, 49(4):115~121.

    5. [5]

      [5] H Lachheb, E Puzenat, A Houas et al. Appl. Catal. B:Environ., 2002, 39(1):75~90.

    6. [6]

      [6] G Liu, Y Li, W Chu et al. Catal. Commun., 2008, 9(6):1087~1091.

    7. [7]

      [7] S Shang, G Liu, X Chai et al. Catal. Today, 2009, 148(148):268~274.

    8. [8]

      [8] Y Xu, H Long, Q Wei et al. Catal. Today, 2013, 211(211):114~119.

    9. [9]

      [9] P Qin, H Xu, H Long et al. J. Nat. Gas Chem., 2011, 20(5):487~492.

    10. [10]

      [10] H Long, Y Xu, X Zhang et al. J. Energy Chem., 2013, 22(5):733~739.

    11. [11]

      [11] X Zhang, N Wang, Y Xu et al. Catal. Commun., 2014, 45:11~15.

    12. [12]

      [12] X Zhang, C Yang, Y Zhang et al. Int. J. Hydrogen Energ., 2015, 40(46):16115~16126.

    13. [13]

      [13] A A Fridman. Plasma Chemistry. New York:Cambridge University Press, 2008.

    14. [14]

      [14] I Langmuir. PNAS, 1928, 14(8):627~637.

    15. [15]

      [15] M Goossens. An introduction to plasma astrophysics and magnetohydrodynamics. Netherlands:Kluwer Academic Publishers, 2003.

    16. [16]

      [16] T Paulmier, L Fulcheri. Chem. Eng. J., 2005, 106(1):59~71.

    17. [17]

      [17] 许根慧,姜恩永, 盛京. 等离子体技术与应用. 北京:化学工业出版社, 2006.

    18. [18]

      [18] 王新新. 高电压技术, 2009, 35(1):1~11.

    19. [19]

      [19] A M Zhu, L H Nie, Q H Wu et al. Chem. Vapor Depos., 2007, 13(4):141~144.

    20. [20]

      [20] L B Di, X S Li, C Shi et al. J. Phys. D:Appl. Phys., 2009, 42(3):32001~32004.

    21. [21]

      [21] D L Chang, X S Li, T L Zhao et al. Chem. Vapor Depos., 2012, 18(4~6):121~125.

    22. [22]

      [22] 陈兆权, 刘明海, 但敏等. 强激光与粒子束, 2010, 22(8):1909~1913.

    23. [23]

      [23] C Zhao, D Child, D Gibson et al. Mater. Res. Bull., 2014, 60:890~894.

    24. [24]

      [24] A M Zhu, L H Nie, X L Zhang et al. Plasma Sci. Technol., 2004,(6):2546~2548.

    25. [25]

      [25] L Nie, C Shi, Y Xu et al. Plasma Proc. Polym., 2007, 4(5):574~582.

    26. [26]

      [26] S X Liu, J L Liu, X S Li et al. Plasma Proc. Polym., 2014, 12(5):422~430.

    27. [27]

      [27] S X Liu, X S Li, X Zhu et al. Plasma Chem. Plasma P., 2013, 33(5):827~838.

    28. [28]

      [28] L Di, X Li, T Zhao et al. Plasma Sci. Technol., 2013, 15(1):64~69.

    29. [29]

      [29] L Sirghi, T Aoki, Y Hatanaka. Thin Solid Films, 2002, 422(1~2):55~61.

    30. [30]

      [30] L Sirghi, Y Hatanaka, K Sakaguchi. Appl. Surf. Sci., 2015, 352:38~41.

    31. [31]

      [31] 杨晋华. 大连理工大学硕士学位论文, 2012.

    32. [32]

      [32] 刘伟, 李岩, 张菁. 东华大学学报:自然科学版, 2009, 35(1):103~107.

    33. [33]

      [33] 李岩, 徐绍魁, 徐金洲等. 东华大学学报:自然科学版, 2009, 35(1):108~113.

    34. [34]

      [34] 聂龙辉. 大连理工大学博士学位论文, 2007.

    35. [35]

      [35] K Takechi, M A Lieberman. J. Appl. Phys., 2001, 90(7):3205~3211.

    36. [36]

      [36] N L Bassett, D J Economou. J. Appl. Phys., 1994, 75(4):1931~1939.

    37. [37]

      [37] 吴茂水.东华大学硕士学位论文, 2014.

    38. [38]

      [38] 熊轶超. 大连理工大学硕士学位论文, 2012.

    39. [39]

      [39] Z Xu, B Qi, L Di et al. J. Energy Chem., 2014, 23(6):679~683.

    40. [40]

      [40] L Di, Z Xu, X Zhang. Catal. Today, 2013, 211(4):143~146.

    41. [41]

      [41] L Di, Z Xu, W Kai et al. Catal. Today, 2013, 211(4):109~113.

    42. [42]

      [42] L Di, X Zhang, Z Xu et al. Plasma Chem. Plasma P., 2014, 34(2):301~311.

    43. [43]

      [43] F Zhigang, S Kaihang, R Ning et al. J. Energy Chem., 2015, 24(5):655~659.

    44. [44]

      [44] W Chu, J Xu, J Hong et al. Catal. Today, 2015, 256:41~48.

    45. [45]

      [45] W Xu, Z Zhan, L Di et al. Catal. Today, 2015, 256:148~152.

    46. [46]

      [46] X Wang, W Xu, N Liu et al. Catal. Today, 2015, 256:203~208.

    47. [47]

      [47] Y Huo, Z Bian, X Zhang et al. J. Phys. Chem. C, 2008, 112(16):6546~6550.

    48. [48]

      [48] G Liu, Y Zhao, C Sun et al. Angew. Chem. Int. Ed., 2008, 47(24):4516~4520.

    49. [49]

      [49] C D Valentin, G Pacchioni. Catal. Today, 2013, 206(3):12~18.

    50. [50]

      [50] T Sano, N Mera, Y Kanai et al. Appl. Catal. B:Environ., 2012, 128(128):77~83.

    51. [51]

      [51] 李保林, 罗正维, 胡龙志等. 化工新型材料, 2014(4):153~158.

    52. [52]

      [52] Z Luo, H Jiang, L Hu et al. Chin. J. Catal., 2014, 35(10):1752~1760

    53. [53]

      [53] S Hu, F Li, Z Fan. Appl. Surf. Sci., 2013, 286:228~234.

    54. [54]

      [54] S Hu, F Li, Z Fan et al. Appl. Surf. Sci., 2014, 236(2):285~292.

    55. [55]

      [55] C Mei, S Zhong. Int. J. Hydrogen Energ., 2015, 40(31):9696~9703.

    56. [56]

      [56] Q Xu, X Wang, X Dong et al. J. Nanomater., 2015, 2015:1~8.

    57. [57]

      [57] J Yu, Z Liu, H Zhang et al. J. Environ. Sci.-China, 2015, 28(2):148~156.

    58. [58]

      [58] 刘遥. 燕山大学硕士学位论文, 2011.

    59. [59]

      [59] 孙晋良. 青岛科技大学硕士学位论文, 2013.

    60. [60]

      [60] R Trejo-Tzab, J J Alvarado-Gil, P Quintana et al. Catal. Today, 2012, 193(1):179~185.

    61. [61]

      [61] S Hu, F Li, Z Fan et al. J. Power Sources, 2014, 250(9):30~39.

    62. [62]

      [62] Y K Chae, J W Park, S Mori et al. J. Ind. Eng. Chem., 2012, 18(4):1237~1241.

    63. [63]

      [63] 张秀玲, 高帅, 袁学德等. 无机化学学报, 2009, 25(11):1912~1916.

    64. [64]

      [64] 李晓菁, 乔冠军, 陈杰瑢. 化学进展, 2007, 19(2):220~224.

    65. [65]

      [65] C H Yong, T Lho, B J Lee et al. Curr. Appl. Phys., 2011, 11(3):517~520.

    66. [66]

      [66] 孔令红. 华南师范大学硕士学位论文, 2004.

  • 加载中
    1. [1]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    2. [2]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    3. [3]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    4. [4]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    5. [5]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    6. [6]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    7. [7]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    8. [8]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    12. [12]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    13. [13]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    16. [16]

      Xinyue HanYunhan YangJiayin LuYuxiang LinDongxue ZhangLing LinLiang Qiao . Efficient serum lipids profiling by TiO2-dopamin-assisted MALDI-TOF MS for breast cancer detection. Chinese Chemical Letters, 2025, 36(5): 110183-. doi: 10.1016/j.cclet.2024.110183

    17. [17]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    18. [18]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    19. [19]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    20. [20]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

Metrics
  • PDF Downloads(2)
  • Abstract views(434)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return