Citation:
Xu Yan, Wang Xiaohui, Li Jing, Du Xihua, Song Ming, Zhou Jun. Preparation of Photocatalytic TiO2 via Plasma Intensification and Its Mechanism[J]. Chemistry,
;2016, 79(10): 914-920.
-
It is commonly recognized that plasma has advantages on material preparation and modification. TiO2, widely used in the research fields of solar cells and photocatalysis, is characterized by high chemical stability, higher antioxidant activity, lower production cost and so on. This paper reviews the preparation of photocatalytic TiO2 by dielectric barrier discharge (DBD) intensification, including the plasma assistant preparation of photocatalytic TiO2 thin films and the doped TiO2 by plasma, and the mechanism is analyzed. According to the research results, the photocatalytic TiO2 prepared by plasma has better uniformity and catalytic activity, which can be ascribed to the electrons with high energy. Firstly, TiO2 particles can adsorb electrons and produce electrostatic repulsive force, hindering the agglomeration of particles. Moreover, the election with high reduction capability can break the Ti-O bond, forming oxygen vacancy and enhancing its catalytic performance.
-
Keywords:
- Plasma,
- TiO2,
- Photocatalysis,
- Mechanism
-
-
-
[1]
[1] A Fujishima, K Honda. Nature, 1972, 238(5358):37~38.
-
[2]
[2] M Ni, M K H Leung, D Y C Leung et al. Renew. Sust. Energ. Rev., 2007, 11(3):401~425.
-
[3]
[3] J H Park, S W Kim, A J Bard. Nano Lett., 2006, 6(1):24~28.
-
[4]
[4] T Ohno. Water Sci. Technol., 2004, 49(4):115~121.
-
[5]
[5] H Lachheb, E Puzenat, A Houas et al. Appl. Catal. B:Environ., 2002, 39(1):75~90.
-
[6]
[6] G Liu, Y Li, W Chu et al. Catal. Commun., 2008, 9(6):1087~1091.
-
[7]
[7] S Shang, G Liu, X Chai et al. Catal. Today, 2009, 148(148):268~274.
-
[8]
[8] Y Xu, H Long, Q Wei et al. Catal. Today, 2013, 211(211):114~119.
-
[9]
[9] P Qin, H Xu, H Long et al. J. Nat. Gas Chem., 2011, 20(5):487~492.
-
[10]
[10] H Long, Y Xu, X Zhang et al. J. Energy Chem., 2013, 22(5):733~739.
-
[11]
[11] X Zhang, N Wang, Y Xu et al. Catal. Commun., 2014, 45:11~15.
-
[12]
[12] X Zhang, C Yang, Y Zhang et al. Int. J. Hydrogen Energ., 2015, 40(46):16115~16126.
-
[13]
[13] A A Fridman. Plasma Chemistry. New York:Cambridge University Press, 2008.
-
[14]
[14] I Langmuir. PNAS, 1928, 14(8):627~637.
-
[15]
[15] M Goossens. An introduction to plasma astrophysics and magnetohydrodynamics. Netherlands:Kluwer Academic Publishers, 2003.
-
[16]
[16] T Paulmier, L Fulcheri. Chem. Eng. J., 2005, 106(1):59~71.
-
[17]
[17] 许根慧,姜恩永, 盛京. 等离子体技术与应用. 北京:化学工业出版社, 2006.
-
[18]
[18] 王新新. 高电压技术, 2009, 35(1):1~11.
-
[19]
[19] A M Zhu, L H Nie, Q H Wu et al. Chem. Vapor Depos., 2007, 13(4):141~144.
-
[20]
[20] L B Di, X S Li, C Shi et al. J. Phys. D:Appl. Phys., 2009, 42(3):32001~32004.
-
[21]
[21] D L Chang, X S Li, T L Zhao et al. Chem. Vapor Depos., 2012, 18(4~6):121~125.
-
[22]
[22] 陈兆权, 刘明海, 但敏等. 强激光与粒子束, 2010, 22(8):1909~1913.
-
[23]
[23] C Zhao, D Child, D Gibson et al. Mater. Res. Bull., 2014, 60:890~894.
-
[24]
[24] A M Zhu, L H Nie, X L Zhang et al. Plasma Sci. Technol., 2004,(6):2546~2548.
-
[25]
[25] L Nie, C Shi, Y Xu et al. Plasma Proc. Polym., 2007, 4(5):574~582.
-
[26]
[26] S X Liu, J L Liu, X S Li et al. Plasma Proc. Polym., 2014, 12(5):422~430.
-
[27]
[27] S X Liu, X S Li, X Zhu et al. Plasma Chem. Plasma P., 2013, 33(5):827~838.
-
[28]
[28] L Di, X Li, T Zhao et al. Plasma Sci. Technol., 2013, 15(1):64~69.
-
[29]
[29] L Sirghi, T Aoki, Y Hatanaka. Thin Solid Films, 2002, 422(1~2):55~61.
-
[30]
[30] L Sirghi, Y Hatanaka, K Sakaguchi. Appl. Surf. Sci., 2015, 352:38~41.
-
[31]
[31] 杨晋华. 大连理工大学硕士学位论文, 2012.
-
[32]
[32] 刘伟, 李岩, 张菁. 东华大学学报:自然科学版, 2009, 35(1):103~107.
-
[33]
[33] 李岩, 徐绍魁, 徐金洲等. 东华大学学报:自然科学版, 2009, 35(1):108~113.
-
[34]
[34] 聂龙辉. 大连理工大学博士学位论文, 2007.
-
[35]
[35] K Takechi, M A Lieberman. J. Appl. Phys., 2001, 90(7):3205~3211.
-
[36]
[36] N L Bassett, D J Economou. J. Appl. Phys., 1994, 75(4):1931~1939.
-
[37]
[37] 吴茂水.东华大学硕士学位论文, 2014.
-
[38]
[38] 熊轶超. 大连理工大学硕士学位论文, 2012.
-
[39]
[39] Z Xu, B Qi, L Di et al. J. Energy Chem., 2014, 23(6):679~683.
-
[40]
[40] L Di, Z Xu, X Zhang. Catal. Today, 2013, 211(4):143~146.
-
[41]
[41] L Di, Z Xu, W Kai et al. Catal. Today, 2013, 211(4):109~113.
-
[42]
[42] L Di, X Zhang, Z Xu et al. Plasma Chem. Plasma P., 2014, 34(2):301~311.
-
[43]
[43] F Zhigang, S Kaihang, R Ning et al. J. Energy Chem., 2015, 24(5):655~659.
-
[44]
[44] W Chu, J Xu, J Hong et al. Catal. Today, 2015, 256:41~48.
-
[45]
[45] W Xu, Z Zhan, L Di et al. Catal. Today, 2015, 256:148~152.
-
[46]
[46] X Wang, W Xu, N Liu et al. Catal. Today, 2015, 256:203~208.
-
[47]
[47] Y Huo, Z Bian, X Zhang et al. J. Phys. Chem. C, 2008, 112(16):6546~6550.
-
[48]
[48] G Liu, Y Zhao, C Sun et al. Angew. Chem. Int. Ed., 2008, 47(24):4516~4520.
-
[49]
[49] C D Valentin, G Pacchioni. Catal. Today, 2013, 206(3):12~18.
-
[50]
[50] T Sano, N Mera, Y Kanai et al. Appl. Catal. B:Environ., 2012, 128(128):77~83.
-
[51]
[51] 李保林, 罗正维, 胡龙志等. 化工新型材料, 2014(4):153~158.
-
[52]
[52] Z Luo, H Jiang, L Hu et al. Chin. J. Catal., 2014, 35(10):1752~1760
-
[53]
[53] S Hu, F Li, Z Fan. Appl. Surf. Sci., 2013, 286:228~234.
-
[54]
[54] S Hu, F Li, Z Fan et al. Appl. Surf. Sci., 2014, 236(2):285~292.
-
[55]
[55] C Mei, S Zhong. Int. J. Hydrogen Energ., 2015, 40(31):9696~9703.
-
[56]
[56] Q Xu, X Wang, X Dong et al. J. Nanomater., 2015, 2015:1~8.
-
[57]
[57] J Yu, Z Liu, H Zhang et al. J. Environ. Sci.-China, 2015, 28(2):148~156.
-
[58]
[58] 刘遥. 燕山大学硕士学位论文, 2011.
-
[59]
[59] 孙晋良. 青岛科技大学硕士学位论文, 2013.
-
[60]
[60] R Trejo-Tzab, J J Alvarado-Gil, P Quintana et al. Catal. Today, 2012, 193(1):179~185.
-
[61]
[61] S Hu, F Li, Z Fan et al. J. Power Sources, 2014, 250(9):30~39.
-
[62]
[62] Y K Chae, J W Park, S Mori et al. J. Ind. Eng. Chem., 2012, 18(4):1237~1241.
-
[63]
[63] 张秀玲, 高帅, 袁学德等. 无机化学学报, 2009, 25(11):1912~1916.
-
[64]
[64] 李晓菁, 乔冠军, 陈杰瑢. 化学进展, 2007, 19(2):220~224.
-
[65]
[65] C H Yong, T Lho, B J Lee et al. Curr. Appl. Phys., 2011, 11(3):517~520.
-
[66]
[66] 孔令红. 华南师范大学硕士学位论文, 2004.
-
[1]
-
-
-
[1]
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
-
[2]
Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440
-
[3]
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
-
[4]
Zhiqiang Wang , Yajie Gao , Tianjun Wang , Wei Chen , Zefeng Ren , Xueming Yang , Chuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602
-
[5]
Yuanqing Wang , Yusong Pan , Hongwu Zhu , Yanlei Xiang , Rong Han , Run Huang , Chao Du , Chengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050
-
[6]
Jiatong Li , Linlin Zhang , Peng Huang , Chengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970
-
[7]
Cailiang Yue , Nan Sun , Yixing Qiu , Linlin Zhu , Zhiling Du , Fuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698
-
[8]
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
-
[9]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[10]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[11]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005
-
[12]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030
-
[13]
Jingping Li , Suding Yan , Jiaxi Wu , Qiang Cheng , Kai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104
-
[14]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[15]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[16]
Xinyue Han , Yunhan Yang , Jiayin Lu , Yuxiang Lin , Dongxue Zhang , Ling Lin , Liang Qiao . Efficient serum lipids profiling by TiO2-dopamin-assisted MALDI-TOF MS for breast cancer detection. Chinese Chemical Letters, 2025, 36(5): 110183-. doi: 10.1016/j.cclet.2024.110183
-
[17]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020
-
[18]
Linfeng Xiao , Wanlu Ren , Shishi Shen , Mengshan Chen , Runhua Liao , Yingtang Zhou , Xibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036
-
[19]
Jiawei Hu , Kai Xia , Ao Yang , Zhihao Zhang , Wen Xiao , Chao Liu , Qinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043
-
[20]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021
-
[1]
Metrics
- PDF Downloads(2)
- Abstract views(435)
- HTML views(36)