Citation: Yang Yong, Wang Yan, Lan Guojun, Li Jian, Li Ying. Preparation of Nitrogen Doped Porous Carbon Materials and Their Application in Heterogeneous Catalysis[J]. Chemistry, ;2016, 79(10): 905-913. shu

Preparation of Nitrogen Doped Porous Carbon Materials and Their Application in Heterogeneous Catalysis

  • Corresponding author: Li Ying, 
  • Received Date: 27 February 2016
    Available Online: 20 April 2016

  • Nitrogen doped porous carbon materials, with high surface area, porosity and great chemical endurance, have attracted much attention for the application in heterogeneous catalysis and materials for its great electrical conductivity and electron transporting ability as the nitrogen was included into the structure. In this work, the preparation method of nitrogen doped porous carbon materials and their application in heterogeneous catalysis were summarized. The research focus and application prospect in the future were proposed as well.
  • 加载中
    1. [1]

      [1] P Serp, J L Figueiredo. Carbon Materials for Catalysis. America:Wiley, 2008.

    2. [2]

      [2] F Rodríguez-Reinoso. Carbon, 1998, 36(3):159~175.

    3. [3]

      [3] D Wang, F Li, M Liu et al. Angew. Chem. Int. Ed., 2008, 120(2):379~382.

    4. [4]

      [4] F Su, X S Zhao, Y Wang et al. J. Phys. Chem. B, 2005, 109(43):20200~20206.

    5. [5]

      [5] D Saha, S Deng. J. Colloid Interf. Sci., 2010, 345(2):402~409.

    6. [6]

      [6] M Hartmann, A Vinu, G Chandrasekar. Chem. Mater., 2005, 17(4):829~833.

    7. [7]

      [7] S H Joo, S J Choi, I Oh et al. Nature, 2001, 412(6843):169~172.

    8. [8]

      [8] C Liang, Z Li, S Dai. Angew. Chem. Int. Ed., 2008, 47(20):3696~3717.

    9. [9]

      [9] Y Wan, Y Shi, D Zhao. Chem. Mater., 2007, 20(3):932~945.

    10. [10]

      [10] C P Ewels, M Glerup. J. Nanosci. Nanotechnol., 2005, 5(9):1345~1363.

    11. [11]

      [11] C A Toles, W E Marshall, M M Johns. Carbon, 1999, 37(8):1207~1214.

    12. [12]

      [12] Y Shao, J Sui, G Yin et al. Appl. Catal. B, 2008, 79(1):89~99.

    13. [13]

      [13] H Tamon, M Okazaki. Carbon, 1996, 34(6):741~746.

    14. [14]

      [14] B G Sumpter, V Meunier, J M Romo-Herrera et al. ACS Nano, 2007, 1(4):369~375.

    15. [15]

      [15] C L Sun, H W Wang, M Hayashi et al. J. Am. Chem. Soc., 2006, 128(26):8368~8369.

    16. [16]

      [16] X Wang, X Li, L Zhang et al. Science, 2009, 324(5928):768~771.

    17. [17]

      [17] S Maldonado, S Morin, K J Stevenson. Carbon, 2006, 44(8):1429~1437.

    18. [18]

      [18] F R Garcia-Garcia, J Alvarez-Rodriguez, I Rodriguez-Ramos et al. Carbon, 2010, 48(1):267~276.

    19. [19]

      [19] S Maldonado, K J Stevenson. J. Phys. Chem. B, 2005, 109(10):4707~4716.

    20. [20]

      [20] C L Sun, H W Wang, M Hayashi et al. J. Am. Chem. Soc., 2006, 128(26):8368~8369.

    21. [21]

      [21] L S Panchakarla, K S Subrahmanyam, S K Saha et al. Adv. Mater., 2009, 21(46):4726~4730.

    22. [22]

      [22] K A Kurak, A B Anderson. J. Phys. Chem. C, 2009, 113(16):6730~6734.

    23. [23]

      [23] R Pietrzak. Fuel, 2009, 88(10):1871~1877.

    24. [24]

      [24] J R Pels, F Kapteijn, J A Moulijn et al. Carbon, 1995, 33(11):1641~1653.

    25. [25]

      [25] J Lu, X Bo, L Guo et al. Electrochim. Acta, 2013, 108:10~16.

    26. [26]

      [26] R Gadiou, A Didion, R I Gearba et al. J. Phys. Chem. Solids, 2008, 69(7):1808~1814.

    27. [27]

      [27] A Vinu. Adv. Funct. Mater., 2008, 18(5):816~827.

    28. [28]

      [28] J P Paraknowitsch, A Thomas, M Antonietti. J. Mater. Chem., 2010, 20(32):6746~6758.

    29. [29]

      [29] G S Shao, L Liu, T Y Ma et al. Chem. Eng. J., 2011, 174(1):452~460.

    30. [30]

      [30] K Chizari, A Vena, L Laurentius et al. Carbon, 2014, 68:369~379.

    31. [31]

      [31] Y Xia, R Mokaya. Adv. Mater., 2004, 16(17):1553~1558.

    32. [32]

      [32] L Zhao, N Baccile, M M Titirici et al. Carbon, 2010, 48(13):3778~3787.

    33. [33]

      [33] M Sevilla, C Falco, M M Titirici et al. RSC Adv., 2012, 2(33):12792~12797.

    34. [34]

      [34] M MTitirici, A Thomas, M Antonietti. Adv. Funct. Mater., 2007, 17(6):1010.

    35. [35]

      [35] S Kubo, I Tan, R J White et al. Chem. Mater., 2010, 22(24):6590~6597.

    36. [36]

      [36] S Li, D Wu, C Cheng et al. Angew. Chem. Int. Ed., 2013, 52(46):12105~12109.

    37. [37]

      [37] S Shrestha, S Asheghi, J Timbro et al. Carbon, 2013, 60:28~40.

    38. [38]

      [38] B Xu, S Hou, F Zhang et al. J. Electroanal. Chem., 2014,712:146~150.

    39. [39]

      [39] R J White, M Antonietti, M M Titirici. J. Mater. Chem., 2009, 19(45):8645~8650.

    40. [40]

      [40] W Kang, H Li, M Ai et al. Mater. Lett., 2014, 116:374~377.

    41. [41]

      [41] J Chang, Z Gao, W Zhao et al. Electrochim. Acta, 2015, 190:912~922.

    42. [42]

      [42] M Sevilla, P Valle-Vigón, A B Fuertes. Adv. Funct. Mater., 2011, 21(14):2781~2787.

    43. [43]

      [43] W Xing, C Liu, Z Zhou et al. Energ. Environ. Sci., 2012, 5(6):7323~7327.

    44. [44]

      [44] S Gao, H Fan, X Wei et al. Part. Part. Syst. Char., 2013, 30(10):864~872.

    45. [45]

      [45] J Yu, M Guo, F Muhammad et al. Micropor. Mesopor. Mater., 2014, 190:117~127.

    46. [46]

      [46] S A Dastgheib, T Karanfil, W Cheng. Carbon, 2004, 42(3):547~557.

    47. [47]

      [47] M C Palma. Fuel and Energy Abstracts. 1996, 6(37):421.

    48. [48]

      [48] F Xie, J Phillips, I F Silva et al. Carbon, 2000, 38(5):691~700.

    49. [49]

      [49] N D Kim, W Kim, J B Joo et al. J. Power Sources, 2008, 180(1):671~675.

    50. [50]

      [50] G G Stavropoulos, P Samaras, G P Sakellaropoulos. J. Hazard. Mater., 2008, 151(2):414~421.

    51. [51]

      [51] R Pietrzak, H Wachowska, P Nowicki. Energ. Fuel., 2006, 20(3):1275~1280.

    52. [52]

      [52] S Bashkova, ABagreev, T J Bandosz. Langmuir, 2003, 19(15):6115~6121.

    53. [53]

      [53] A Bagreev, J A Menendez, I Dukhno et al. Carbon, 2004, 42(3):469~476.

    54. [54]

      [54] M N Groves, A S W Chan, C Malardier-Jugroot et al. Chem. Phys. Lett., 2009, 481(4):214~219.

    55. [55]

      [55] Y H Li, T H Hung, C W Chen. Carbon, 2009, 47(3):850~855.

    56. [56]

      [56] H Liu, J R Wu. Int. J. Hydrogen Energy, 2011, 36(1):87~93.

    57. [57]

      [57] Z Lei, L An, L Dang et al. Micropor. Mesopor. Mater., 2009, 119(1):30~38.

    58. [58]

      [58] S Shrestha, S Asheghi, J Timbroetal. Appl. Catal. A-Gen., 2013, 464:233~242.

    59. [59]

      [59] I Nongwe, V Ravat, R Meijboom et al. Appl. Catal. A-Gen., 2016, 466:1~8.

    60. [60]

      [60] M Zhang, J Shi, Y Sun et al. Catal. Commun., 2015, 70:72~76.

    61. [61]

      [61] J Zhang, L Ma, M Gan et al. J. Power Sources, 2015, 288:42~52.

    62. [62]

      [62] Z Li, J Liu, C Xia et al. ACS Catal., 2013, 3(11):2440~2448.

    63. [63]

      [63] Z Wei, Y Gong, T Xiong et al. Catal. Sci. Technol., 2015, 5, 397~404.

    64. [64]

      [64] X Li, M Zhu, B Dai. Appl. Catal. B:Environ., 2013, 142:234~240.

    65. [65]

      [65] B Dai, X Li, J Zhang et al. Chem. Eng. Sci., 2015,135:472~478.

    66. [66]

      [66] J Zhao, J Xu, J Xu et al. Chem. Eng. J., 2015, 262:1152~1160.

    67. [67]

      [67] L Hou, J Zhang, Y Pu et al. RSC Adv., 2016, 6(22):18026~18032.

    68. [68]

      [68] N Xu, M Zhu, J Zhang et al. RSC Adv., 2015, 5:86172~86178.

    69. [69]

      [69] Z Li, J Li, J Liu et al. ChemCatChem, 2014, 6(5):1333~1339.

    70. [70]

      [70] D Su, J Wang, H Jin et al. J. Mater. Chem. A, 2015, 3:11756~11761.

    71. [71]

      [71] B St hr, H P Boehm, R Schl gl. Carbon, 1991, 29(6):707~720.

    72. [72]

      [72] Y Gao, G Hu, J Zhong et al. Angew. Chem. Int. Ed., 2013, 52(7):2109~2113.

    73. [73]

      [73] J Restivo, R P Rocha, A M T Silva et al. Chin. J. Catal., 2014, 35(6):896~905.

    74. [74]

      [74] H Ba, C Duong-Viet, Y Liu et al. C. R. Chim., 2016, doi:10.1016/j.crci.2015.09.022.

    75. [75]

      [75] G Long, K Wan, M Liu et al. Chin. J. Catal., 2015, 36(8):1197~1204.

    76. [76]

      [76] C Han, J Wang, YGong et al. J. Mater. Chem. A, 2014, 2:605~609.

    77. [77]

      [77] J Li, Z Li, J Tong et al. RSC Adv., 2015, 5(86):70010~70016.

    78. [78]

      [78] Q Liu, C Chen, F Pan et al. Electrochim. Acta, 2015, 170:234~241.

    79. [79]

      [79] W Yuan, J Li, AXieet al. Electrochim. Acta, 2015, 165:29~35.

    80. [80]

      [80] X Li, X Pan, X Bao. J. Energ. Chem., 2014, 23(2):131~135.

    81. [81]

      [81] K Zhou, B Li, Q Zhang et al. ChemSusChem, 2014, 7(3):723~728.

    82. [82]

      [82] X Li, X Pan, L Yu et al. Nat. Commun., 2014, 5(4):3688~3688.

    83. [83]

      [83] C Zhang,L Kang, M Zhu et al. RSC Adv., 2015, 5(10):7461~7468.

  • 加载中
    1. [1]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    2. [2]

      Qianqian ZHULihui XUHong PANChengjian YAOHong ZHAONan MAXiaolin SHIZihan SHENWeijun ZHANGZhongjian WANG . Waste cotton fabric-ased porous carbon materials: Preparation and wave-absorbing properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1555-1564. doi: 10.11862/CJIC.20250040

    3. [3]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    4. [4]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    5. [5]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    6. [6]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    7. [7]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    8. [8]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    9. [9]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    10. [10]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    11. [11]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    12. [12]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    13. [13]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    14. [14]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    15. [15]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    16. [16]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    17. [17]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    18. [18]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    19. [19]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    20. [20]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

Metrics
  • PDF Downloads(13)
  • Abstract views(601)
  • HTML views(70)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return