Citation: JIANG Jun-hui, CAO Yong-yong, NI Zhe-ming, ZHANG Lian-yang. Comparison of reaction mechanism of thiophene hydrodesulfurization on Au13 and Pt13 clusters[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(08): 961-969. shu

Comparison of reaction mechanism of thiophene hydrodesulfurization on Au13 and Pt13 clusters

  • Corresponding author: NI Zhe-ming, 
  • Received Date: 15 March 2016
    Available Online: 25 April 2016

    Fund Project:

  • The behaviors of thiophene adsorption and hydrodesulfurization on cubic octahedral M13 (M =Au, Pt) clusters were investigated by density functional theory. The results show that the adsorption energy of thiophene on Pt13 is higher than that on Au13; on the Au13 cluster, the Hol-tri site is most stable for the thiophene adsorption with ring, whereas on the Pt13 cluster, the Hol-quadr site is most stable. By the indirect desulfurization mechanism, the desulfurization is achieved probably via the cis-hydrogenation; the removal of C-S is the rate-determining step. By the direct desulfurization mechanism, the HS hydrogenation turns to be the rate-determining step. The desulfurization is most likely via the direct desulfurization mechanism, which exhibits much lower activation energy than the indirect desulfurization mechanism. The energy change for thiophene desulfurization on the Au13 cluster is exothermic, whereas on the Pt13 cluster it is endothermic; as a result, the hydrodesulfurization on Au13 is much easier than that on Pt13.
  • 加载中
    1. [1]

      [1] BASTON E P,FRANCA A B,NETO A V D,URQUIETA-GONZALEZ E A.Incorporation of the precursors of Mo and Ni oxides directly into the reaction mixture of sol-gel prepared gamma-Al2O3-ZrO2 supports-Evaluation of the sulfided catalysts in the thiophene hydrodesulfurization[J].Catal Today,2015,246:184-190.

    2. [2]

      [2] LIAO C N,WANG J Y,LI B.Mechanism of Mo-catalyzed C-S cleavage of thiophene[J].J Organomet Chem,2014,749:275-286.

    3. [3]

      [3] 祖运,秦玉才,高雄厚,莫周胜,张磊,张晓彤,宋丽娟.催化裂化条件下噻吩与改性Y分子筛的作用机制[J].燃料化学学报,2015,43(7):862-869.(ZU Yun,QIN Yu-cai,GAO Xiong-hou,MO Zhou-sheng,ZHANG Lei,ZHANG Xiao-tong,SONG Li-juan.Mechanisms of thiophene conversion over the modified Y zeolites under catalytic cracking conditions[J].J Fuel Chem Technol,2015,43(7):862-869.)

    4. [4]

      [4] 刘理华,刘书群,尹海亮,柳云骐,刘晨光.Ni2P和MoS2催化剂在二苯并噻吩加氢脱硫反应中的氢溢流效应[J].燃料化学学报,2015,43(6):708-713.(LIU Li-hua,LIU Shu-qun,YIN Hai-liang,LIU Yun-qi,LIU Chen-guang.Hydrogen spillover effect between Ni2P and MoS2 catalysts in hydrodesulfurization of dibenzothiophene[J].J Fuel Chem Technol,2015,43(6):708-713.)

    5. [5]

      [5] SHAN J,TENHU H.Recent advances in polymer protected gold nanoparticles:Synthesis,properties and applications[J].Chem Commun,2007,44:4580-4598.

    6. [6]

      [6] CORMA A,SERNA P.Chemoselective hydrogenation of nitro compounds with supported gold catalysts[J].Science,2006,313(5785):332-334.

    7. [7]

      [7] LI X H,ZHENG W L,PAN H Y,YU Y,CHEN L,WU P.Pt nanoparticles supported on highly dispersed TiO2 coated on SBA-15 as an efficient and recyclable catalyst for liquid-phase hydrogenation[J].J Catal,2013,300:9-19.

    8. [8]

      [8] RAMOS-FERNANDEZ E V,PIETERS C,VAN DER LINDEN B,JNAN-ALCANIZ J,SERRA-CRESPO P,VERHOEVEN M W G M,NIEMANTSVERDRIET H,GASCON J,KAPTEIJN F.Highly dispersed platinum in metal organic framework NH2-MIL-101(Al) containing phosphotungstic acid-Characterization and catalytic performance[J].J Catal,2012,289:42-52.

    9. [9]

      [9] LUO S R,CHEN S Z,HSU Y H,YAU S L,LIN Y J,HUANG P Y,CHEN M C.In situ scanning tunneling microscopy characterization of thienothiophene-based semiconducting organic molecules adsorbed on a Au (111) electrode[J].Surf Sci,2013,616:155-160.

    10. [10]

      [10] WANG H M,LGLESIA E.Mechanism and site requirements of thiophene hydrodesulfurization catalyzed by supported Pt clusters[J].Chemcatchem,2011,3(7):1166-1175.

    11. [11]

      [11] ZHU H Y,GUO W Y,JIANG R B,ZHAO L M,LU X Q,LI M,FU D L,SHAN H H.Decomposition of methanthiol on Pt (111):A density functional investigation[J].Langmuir,2010,26(14):12017-12025.

    12. [12]

      [12] 倪哲明,施炜,夏明玉,薛继龙.Au (111)面上噻吩加氢脱硫反应机理的理论研究[J].高等学校化学学报,2013,34(10):2353-2362.(NI Zhe-ming,SHI Wei,XIA Ming-yu,XUE Ji-long.Theoretical studies on reaction mechanism of hydrodesulfurization of thiophene catalyzed by Au (111) plane[J].Chem J Chin Univ,2013,34(10):2353-2362.)

    13. [13]

      [13] LI Z,CHEN Z X,HE X,KANG G J.Theoretical studies of acrolein hydrogenation on Au-20 nanoparticle[J].J Chem Phys,2010,132(18):184702.

    14. [14]

      [14] IMADA Y,OSAKI M,NOGUCHI M,MAEDA T,FUJIKI M,KAWAMORITA S,KOMIYA N,NAOTA T.Flavin-functionalized gold nanoparticles as an efficient catalyst for aerobic organic transformations[J].ChemCatChem,2015,7(1):99-106.

    15. [15]

      [15] BUCHWALTER P,ROSE J,BRAUNSTEIN P.Multimetallic catalysis based on heterometallic complexes and clusters[J].Chem Rev,2015,115(1):28-126.

    16. [16]

      [16] LARSSON J A,NOLAN M,GREER J C.Interactions between thiol molecular linkers and the Au-13 nanoparticle[J].J Phys Chem B,2002,106(23):5931-5937.

    17. [17]

      [17] 徐坤,冯杰,褚绮,张丽丽,李文英.噻吩在γ-Mo2N (100)表面上加氢脱硫反应的密度泛函理论研究[J].物理化学学报,2014,30(11):2063-2070.(XU Kun,FENG Jie,CHU Qi,ZHANG Li-li,LI Wen-ying.Density function theory study of thiophene hydrodesulfurization onγ-Mo2N (100) surface[J].Acta Phys Chim Sin,2014,30(11):2063-2070.)

    18. [18]

      [18] HAMMER B,HANSEN L B,NORSKOV J K.Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals[J].Phys Rev B,1999,59(11):7413-7421.

    19. [19]

      [19] 蒋军辉,夏盛杰,倪哲明,张连阳.巴豆醛在Au (111)面上的吸附及选择性加氢机理研究[J].高等学校化学学报,2016,37(4):693-700.(JIANG Jun-hui,XIA Sheng-jie,NI Zhe-ming,ZHANG Lian-yang.Adsorption and selective hydrogenation mechanism of crotonaldehyde on Au (111) surface[J].Chem J Chin Univ,2016,37(4):693-700.)

    20. [20]

      [20] 代广珍,蒋先伟,徐太龙,刘琦,陈军宁,代月花.密度泛函理论研究氧空位对HFO2晶格结构和电学特性影响[J].物理学报,2015,64(3):033101.(DAI Guang-zhen,JIANG Xian-wei,XU Tai-long,LIU Qi,CHEN Jun-ning,DAI Yue-hua.Effect of oxygen vacancy on lattice and electronic properties of HFO2 by means of density function theory study[J].Acta Phys Sin,2015,64(3):033101.)

    21. [21]

      [21] GE Q,JENKINS S J,KING D A.Localisation of adsorbate-induced demagnetisation:CO chemisorbed on Ni{110}[J].Chem Phys Lett,2000,327(3/4):125-130.

    22. [22]

      [22] DELLEY B.Fast calculation of electrostatics in crystals and large molecules[J].J Phys Chem,1996,100(15):6107-6110.

    23. [23]

      [23] GULIAMOV O,FRENKEL A I,MENARD L D,NUZZO R G,KRONIK L.Tangential ligand-induced strain in Icosahedral Au-13[J].J Am Chem Soc,2007,129(36):10978.

    24. [24]

      [24] APRA E,FORTUNELLI A.Density-functional calculations on platinum nanoclusters:Pt-13,Pt-38,and Pt-55[J].J Phys Chem A,2003,107(16):2934-2942.

    25. [25]

      [25] MAGER-MAURY C,BONNARD G,CHIZALLET C,SAUTET P,RAYBAUD P.H-2-induced reconstruction of supported Pt clusters:Metal-support interaction versus surface hydride[J].ChemCatChem,2011,3(1):200-207.

    26. [26]

      [26] SHAFAI G,HONG S Y,BERTINO M,RAHMAN T S.Effect of ligands on the geometric and electronic structure of Au-13 clusters[J].J Phys Chem C,2009,113(28):12072-12078.

    27. [27]

      [27] CHENG P,ZHANG S L,WANG P,HUANG S P,TIAN H P.First-principles investigation of thiophene adsorption on Ni-13 and Zn@Ni-12 nanoclusters[J].Comput Theor Chem,2013,1020:136-142.

    28. [28]

      [28] SHI W,ZHANG L Y,XIA S J,NI Z M.Adsorption of thiophene on M (111)(M=Pd,Pt,Au) surfaces[J].Acta Phys Chim Sin,2014,30(12):2249-2255.

    29. [29]

      [29] WANG H M,LGLESIA E.Thiophene hydrodesulfurization catalysis on supported Ru clusters:Mechanism and site requirements for hydrogenation and desulfurization pathways[J].J Catal,2010,273(2):245-256.

  • 加载中
    1. [1]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    4. [4]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    5. [5]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    6. [6]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    7. [7]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    8. [8]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    9. [9]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    10. [10]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    11. [11]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    12. [12]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    13. [13]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    14. [14]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    15. [15]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    16. [16]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    17. [17]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    18. [18]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    19. [19]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    20. [20]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

Metrics
  • PDF Downloads(0)
  • Abstract views(553)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return