Citation: YU Xue, WANG Liang, FENG Li-juan, LI Chun-hu. Preparation of Au/BiOBr/Graphene composite and its photocatalytic performance in phenol degradation under visible light[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(08): 937-942. shu

Preparation of Au/BiOBr/Graphene composite and its photocatalytic performance in phenol degradation under visible light

  • Corresponding author: WANG Liang, 
  • Received Date: 12 April 2016
    Available Online: 22 June 2016

  • BiOBr, BiOBr/Graphene and Au/BiOBr/Graphene composites were prepared by hydrothermal synthesis and dopamine in-situ reduction method; their morphology, composition, phase structure and optical absorption properties were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible diffuse reflection spectroscopy (DRS) and photoluminescence (PL) emission spectroscopy. The photocatalytic performance of Au/BiOBr/Graphene in phenol degradation under visible light was investigated. The results indicate that the Au/BiOBr/Graphene composite exhibits enhanced absorption in the visible light region as well as superior photocatalytic activity in the degradation of aqueous phenol, in comparison with BiOBr and BiOBr/Graphene, owing to the enhanced quantum efficiency, narrowed band gap (2.25eV) and surface plasmon resonance of Au nano particles. Over Au/BiOBr/Graphene composite, the degradation rate of phenol reaches 64% in 180min under visible light irradiation.
  • 加载中
    1. [1]

      [1] OREGAN B,GRATZAL M.A low-cost,high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films[J].Nature,1991,353:737-740.

    2. [2]

      [2] CHEN X,CHEN L,CHEN Y W.Self-assembly of discotic liquid crystal decorated ZnO nanoparticles for efficient hybrid solar cells[J].Rsc Adv,2014,4(7):3627-3632.

    3. [3]

      [3] 桂明生,王鹏飞,袁东,杨易坤.Bi2WO6/g-C3N4复合型催化剂的制备及其可见光光催化性能[J].无机化学学报,2013,29(10):2057-2064.(GUI Ming-sheng,WANG Peng-fei,YUAN Dong,YANG Yi-kun.Synthesis and visible-light photocatalytic activity of Bi2WO6/g-C3N4 composite photocatalyst[J].Chin J Inorg Chem,2013,29(10):2057-2064.)

    4. [4]

      [4] 章剑,章燕,沈玉华,李村,谢安建,花状结构Bi2WO6多孔微球:组装及光催化性能[J].无机化学学报,2012,28(4):739-744.(ZHANG Jian,ZHANG Yan,SHEN Yu-hua,LI Cun,XIE An-dong.Flower-like Bi2WO6 porous microspheres:Assembly and photocatalytic perforrmance[J].Chin J Inorg Chem,2012,28(4):739-744.)

    5. [5]

      [5] ZHANG X M,CHANG X F,GONDAL M A,ZHANG B,LIU Y S,JI G B.Synthesis and photocatalytic activity of graphene/BiOBr composites under visible light[J].Appl Surf Sci,2012,258(20):7826-7832.

    6. [6]

      [6] CAO Q W,CUI X Z,YI F S,XU C.A novel CdWO4/BiOBr p-n heterojunction as visible light photocatalyst[J].J Alloys Compd,2016,670:12-17.

    7. [7]

      [7] HUANG Y C,FAN W J,LONG B,LI H B,ZHAO F Y,LIU Z L,TONG Y X,JI H B.Visible light Bi2S3/Bi2O3/Bi2O2CO3 photocatalyst for effective degradation of organic pollutions[J].Appl Catal B:Environ,2016,186:68-76.

    8. [8]

      [8] 姜凌霄,李可心,颜流水,戴玉华,黄智敏.Ag (Au)/石墨烯-TiO2复合光催化剂的制备及其模拟太阳光光催化性能[J].催化学报,2012,33(12):1974-1981.(JIANG Ling-xiao,LI Ke-xin,YAN Liu-shui,DAI Yu-hua,HUANG Zhi-min.Preparation of Ag (Au)/Graphene-TiO2 composite photocatalysts and their catalytic performance under simulated sunlight irradiation[J].Chin J Catal,2012,33(12):1974-1981.)

    9. [9]

      [9] 陈建炜,石建稳,王旭,崔浩杰,付明来.半导体/石墨烯复合光催化剂的制备及应用[J].催化学报,2013,34(4):621-624.(CHEN Jian-wei,SHI Jian-wen,WANG Xu,CUI Hao-jie,FU Ming-lai.Recent progress in the preparation and application of semiconductor/graphene composite photocatalysts[J].Chin J Catal,2013,34(4):621-640.)

    10. [10]

      [10] LIU W J,CAI J Y,LI Z H.Self-assembly of semiconductor nanoparticles/Reduced Graphene Oxide (RGO) composite aerogels for enhanced photocatalytic performance and facile recycling in aqueous photocatalysis[J].ACS Sustainable Chem Eng,2015,3(2):277-282.

    11. [11]

      [11] 韩丹,张爱文,高官俊,苏海全.负载型纳米Au催化剂光催化性能的研究进展[J].化工进展,2012,31(2):435-440.(HAN Dan,ZHANG Ai-wen,GAO Guan-jun,SU Hai-quan.Progress in the photocatalysis of supported-gold catalysts[J].Chem Ind Eng Prog,2012,31(2):435-440.)

    12. [12]

      [12] SUN L L,ZHAO D X,SONG Z M,SHAN C X,ZHANG Z Z,LI B H,SHEN D Z.Gold nanoparticles modified ZnO nanorods with improved photocatalytic activity[J].J Colloid Interface Sci,2011,363(1):175-181.

    13. [13]

      [13] BI J H,ZHOU Z Y,CHEN M Y,LIANG S J,HE Y H,ZHANG Z Z,WU L.Plasmonic Au/CdMoO4 photocatalyst:Influence of surface plasmon resonance for selective photocatalytic oxidation of benzylic alcohol[J].Appl Surf Sci,2015,349:292-298.

    14. [14]

      [14] LIU Y,YU H T,WANG H,CHEN S,QUAN X.Efficient H2 production over Au/graphene/TiO2 induced by surface plasmon resonance of Au and band-gap excitation of TiO2[J].Mater Res Bull,2014,59:111-116.

    15. [15]

      [15] YU C F,DONG S Y,ZHAO J,HAN X,WANG J Z,SUN J H.Preparation and characterization of sphere-shaped BiVO4/reduced graphene oxide photocatalyst for an augmented natural sunlight photocatalytic activity[J].J Alloys Compd,2016,677:219-227.

    16. [16]

      [16] DONG S,CUI Y,WANG Y,LI Y K,HU L M,SUN J Y,SUN J H.Designing three-dimensional acicular sheaf shaped BiVO4/reduced graphene oxide composites for efficient sunlight-driven photocatalytic degradation of dye wastewater[J].Chem Eng J,2014,249:102-110.

    17. [17]

      [17] WANG N,ZHOU Y,CHEN C,CHENG L Y,DING H M.Ag-C3N4 supported graphene oxide/Ag3PO4 composite with remarkably enhanced photocatalytic activity under visible light[J].Catal Commun,2016,73:74-79.

    18. [18]

      [18] HUO Y N,ZHANG J,MIAO M,JIN Y,Solvothermal synthesis of flower-like BiOBr microspheres with highly visible-light photocatalytic performances[J].Appl Catal B:Environ,2012,111(3):334-341.

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    4. [4]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    5. [5]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    6. [6]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    7. [7]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    8. [8]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    9. [9]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    10. [10]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    11. [11]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    12. [12]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    13. [13]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    14. [14]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    15. [15]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    16. [16]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    17. [17]

      Yichang Liu Li An Dan Qu Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105

    18. [18]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    19. [19]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    20. [20]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

Metrics
  • PDF Downloads(0)
  • Abstract views(611)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return