Citation: WANG Miao, SHEN Xin-Lin, TANG Yan-Feng, JIANG Guo-Qing, SHI Yu-Jun. Glycine-Assisted Hydrothermal Synthesis of CaF2∶Ln3+(Ln=Eu, Tb) Microcrystals with Different Morphologies[J]. Chinese Journal of Inorganic Chemistry, ;2012, 28(12): 2660-2666. shu

Glycine-Assisted Hydrothermal Synthesis of CaF2∶Ln3+(Ln=Eu, Tb) Microcrystals with Different Morphologies

  • Corresponding author: SHI Yu-Jun, 
  • Received Date: 27 March 2012
    Available Online: 25 June 2012

    Fund Project: 国家自然科学基金(No.21173122,20906052) (No.21173122,20906052)江苏省自然科学基金(No.BK2010281) (No.BK2010281)南通市应用研究计划项目(BK2011035) (BK2011035)

  • By employing KBF4 or K2SiF6 as fluoride source, a facile glycine-assisted hydrothermal route has been developed to synthesize a series of well-dispersed CaF2∶Ln3+(Ln=Eu, Tb) microcrystals with a variety of morphologies, such as cubes, hollow polyhedra and hollow spheres. X-ray diffraction (XRD), Fourier transform IR (FTIR), scanning electron microscopy (SEM) and photoluminescence (PL) were used to characterize the purity, crystalline phase, morphologies and the photoluminescence properties of the samples. The XRD results show that all the as-prepared CaF2 have cubic structure and high crystallinity. The SEM results indicate that, in the presence of glycine, the as-prepared CaF2 microcrystals present morphologies of highly dispersed hollow polyhedra and hollow spheres obtained from KBF4 and K2SiF6, respectively. Meanwhile, the CaF2 hollow spheres were assembled from numerous nanocubes. In the synthetic process, glycine, fluoride source and reaction time play crucial role in confining the growth of the different morphological CaF2 microcrystals. The growth mechanism for products with diverse microstructures have been proposed based on the experimental results.
  • 加载中
    1. [1]

      [1] Nakajima T, Zemva B, Tressaud A. Advanced Inorganic Fluorides. Amsterdam: Elsevier, 2000.

    2. [2]

      [2] Kinsman B E, Hanney R. Adv. Mater. Opt. Electron., 1995,5:109-115

    3. [3]

      [3] Moon H J, Kim K N, Kim K M, et al. J. Biomed. Mater. Res. Part A, 2005,74A:497-502

    4. [4]

      [4] Feldmann C, Roming M, Trampert K. Small, 2006,2:1248-1250

    5. [5]

      [5] Sun X M, Li Y D. Chem. Commun., 2003:1768-1769

    6. [6]

      [6] Zhang C M, Li C X, Peng C, et al. Chem. Eur. J., 2010,16: 5672-5680

    7. [7]

      [7] Zhang X M, Quan Z W, Yang J, et al. Nanotechnology, 2008,19:075603(8pp)

    8. [8]

      [8] Hou S Y, Zou Y C, Liu X C, et al. CrystEngComm, 2011,13:835-840

    9. [9]

      [9] Quan Z W, Yang D M, Yang P P, et al. Inorg. Chem., 2008,47:9509-9517

    10. [10]

      [10] Du Y P, Sun X, Zhang Y W, et al. Cryst. Growth Des., 2009,9:2013-2019

    11. [11]

      [11] Mao Y B, Zhang F, Wong S S. Adv. Mater., 2006,18:1895-1899

    12. [12]

      [12] Wang W S, Zhen L, Xu C Y, et al. ACS Appl. Mater. Interfaces, 2009,1:780-788

    13. [13]

      [13] Guo F Q, Zhang Z F, Li H F, et al. Chem. Commun., 2010, 46:8237-8239

    14. [14]

      [14] WANG Miao(王淼), CHEN Ting-Ting(陈婷婷), TANG Yan-Feng(汤艳峰), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28:185-190

    15. [15]

      [15] Yang X F, Dong X T, Wang J X, et al. J. Alloy Compd., 2009,487:298-303

    16. [16]

      [16] Yang X F, Dong X T, Wang J X, et al. Mater. Lett., 2009, 63:629-631

    17. [17]

      [17] Chen H M, Zhao Y Q, He J H, et al. Analytica Chimica Acta, 2010,659:266-273

    18. [18]

      [18] Wang M, Shi Y J, Jiang G Q. Mater. Res. Bull., 2012,47: 18-23

    19. [19]

      [19] CHEN Guang-De(陈广德), XU Zhen-Mei(徐贞梅). Fine Chem.(Jingxi Huagong), 2002,19:701-702,726

    20. [20]

      [20] ZHANG Da-Fei(张大飞), ZHAO Ri-Getu(照日格图), LIU Jian-Hua(刘建华), et al. Chinese J. Spect. Lab.(Guangpu Shiyanshi), 2006,23:91-95

    21. [21]

      [21] CAO Xiao-Feng(曹霄峰), ZHANG Lei(张雷), MA Ying-Li (马英丽),et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2010,26:787-792

    22. [22]

      [22] Qian H S, Yu S H, Gong J Y, et al. Cryst. Growth Des. 2005,5:935-939

    23. [23]

      [23] WANG Miao(王淼), SHI Yu-Jun(石玉军), JIANG Guo-Qing (江国庆). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2009,25:1785-1790

    24. [24]

      [24] Wei Z G, Sun L D, Jiang X C, et al. Chem. Mater., 2003,15: 3011-3017

    25. [25]

      [25] Jiang X C, Sun L D, Yan C H. J. Phys. Chem. B, 2004,108: 3387-3390

  • 加载中
    1. [1]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    2. [2]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    3. [3]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    4. [4]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    5. [5]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    6. [6]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    7. [7]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    8. [8]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    9. [9]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    10. [10]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    11. [11]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    12. [12]

      Meiyu Lin Yuxin Fang Songzhang Shen Yaqian Duan Wenyi Liang Chi Zhang Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042

    13. [13]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    14. [14]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    15. [15]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    16. [16]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    17. [17]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    18. [18]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    19. [19]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    20. [20]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

Metrics
  • PDF Downloads(0)
  • Abstract views(369)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return