Citation: ZHANG Jing-Xian, YI Guan-Gui, LIU Ying-Liang, WU Yong-Jian, SUN Li-Xian. KOH-Activated Carbon Xerogels for Hydrogen Storage[J]. Chinese Journal of Inorganic Chemistry, ;2012, 28(12): 2565-2572. shu

KOH-Activated Carbon Xerogels for Hydrogen Storage

  • Corresponding author: LIU Ying-Liang, 
  • Received Date: 28 November 2011
    Available Online: 2 June 2012

    Fund Project: 国家-广东联合基金(No.U0734005) (No.U0734005)中央高校基本科研业务费专项资金(No.21610102) (No.21610102)国家自然科学基金(No.21031001) (No.21031001)广东省高等学校科技创新重点项目(No.cxzd1014)资助项目. (No.cxzd1014)

  • Organic xerogel was rapidly prepared via a lysine-catalyzed gelation process with resorcinol and formaldehyde as the precursors. After carbonization and a subsequent activation with KOH, carbon xerogels with high microporosity and high-specific-surface area could be obtained. The hydrogen storage properties of the porous carbon xerogels were studied. The relationship of the maximum hydrogen storage capacity with specific surfacearea, micropore volume and pore size distribution was investigated. The results show that moderately KOH-activated carbon xerogel (ACX-5) with high surface area of 2 204 m2·g-1 and large total-pore volume of 1.09 cm3·g-1 exhibits the largest hydrogen storage capacity of 4.3wt% at 77 K and under 1.1 MPa hydrogen pressure.
  • 加载中
    1. [1]

      [1] Schlapbach L, Züttel A. Nature, 2001,414:353-358

    2. [2]

      [2] Yang Z, Xia Y, Mokaya R. J. Am. Chem. Soc., 2007,129: 1673-1679

    3. [3]

      [3] Pacula A, Mokaya R. J. Phys. Chem. C, 2008,112(7):2764-2769

    4. [4]

      [4] Xu W C, Takahashi K, Matsuo Y, et al. Int. J. Hydrogen Energy, 2007,32(13):2504-2512

    5. [5]

      [5] Kabbour H, Baumann T F, Satcher Jr J H, et al. Chem. Mater., 2006,18:6085-6087

    6. [6]

      [6] Tian H Y, Buckley C E, Wang S B, et al. Carbon, 2009,47: 2112-2142

    7. [7]

      [7] Zubizarreta L, Menéndez J A, Job N, et al. Carbon, 2010, 48:2722-2733

    8. [8]

      [8] Tian H Y, Buckley C E, Paskevicius M, et al. Int. J. Hydrogen Energy, 2011,36:10855-10860

    9. [9]

      [9] Pekala R W. J. Mater. Sci., 1989,24:3221-3227

    10. [10]

      [10] Pekala R W, Alviso C T, Kong F M, et al. J. Non-Cryst. Solids, 1992,145:90-98

    11. [11]

      [11] Pekala R W. US Patent, 873218. 1989-04.

    12. [12]

      [12] Pekala R W, Schaefer D W. Macromolecules, 1993,26:5887-5893

    13. [13]

      [13] Mulik S, Sotiriou-Leventis C, Leventis N. Chem. Mater., 2007, 19:6138-6144

    14. [14]

      [14] Hao G P, Li W C, Qian D, et al. Adv. Mater., 2010,22:853-857

    15. [15]

      [15] Brunauer S, Emmett P H, Teller E. J. Am. Chem. Soc., 1938,60:309-319

    16. [16]

      [16] Figueroa-Torres M Z, Robau-Sanchez A, de la Torre-Saenz L, et al. Micropor. Mesopor. Mater., 2007,98:89-93

    17. [17]

      [17] Lozano-Castello D, Calo J M, Cazorla-Amoros D, et al. Carbon, 2007,45:2529-2536.

    18. [18]

      [18] Ehrburger P, Addoun A, Addoun F, et al. Fuel, 1986,65: 1447-1449

    19. [19]

      [19] Brunauer S, Emmett P H, Teller E. J. Am. Chem. Soc, 1938, 60:309-319

    20. [20]

      [20] Gregg S J, Sing K S W. Adsorption, Surface Area and Porosity. 2nd Ed, London: Academic Press, 1982:56

    21. [21]

      [21] Wang H L, Gao Q M, Hu J. J. Am. Chem. Soc., 2009,131: 7016-7022

    22. [22]

      [22] Hiroki A, Tomokazu T, Ikumi T. Int. J. Hydrogen Energy, 2011,36:580-585

    23. [23]

      [23] Armandi M, Bonelli B, Geobaldo F, et al. Micropor Mesopor Mater., 2010,132:414-420

    24. [24]

      [24] Zubizarreta L, Arenillas A, Pis J. J. Int. J. Hydrogen Energy, 2009,34:4575-4581

    25. [25]

      [25] de la Casa-Lillo MA, Lamari-Darkrim F, Cazorla-Amoros D, et al. J. Phys. Chem. B, 2002,106:10930-10934

    26. [26]

      [26] Gadiou R, Texier-Mandoki N, Piquero T, et al. Adsorption, 2005,11:823-827

    27. [27]

      [27] Rezpka M, Lamp P, de la Casa-Lillo M A. J. Phys. Chem. B, 1998,102:10894-10898

    28. [28]

      [28] Zubizarreta L, Gomez E I, Arenillas A, et al. Adsorption, 2008,14:557-566

    29. [29]

      [29] Jordá-Beneyto M, Suárez-Garía F, Lozano-Castelló D, et al. Carbon, 2007,45:293-303

  • 加载中
    1. [1]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    2. [2]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    3. [3]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    4. [4]

      Chengpeng Liu Yinxia Fu . Design and Practice of Ideological and Political Education for the Public Elective Course “Life Chemistry Experiment” in Universities. University Chemistry, 2024, 39(10): 242-248. doi: 10.12461/PKU.DXHX202404064

    5. [5]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    6. [6]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    7. [7]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    8. [8]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    9. [9]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    10. [10]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    11. [11]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    12. [12]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    13. [13]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    14. [14]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    15. [15]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    18. [18]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    19. [19]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    20. [20]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

Metrics
  • PDF Downloads(0)
  • Abstract views(513)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return