Citation: CHEN Xiao-Yun, LU Dong-Fang, LU Yan-Feng. Mesoporous N-F Codoped TiO2 Photocatalyst with Visible-Light Response: Preparation Using Cellulose Template and Catalytic Performance[J]. Chinese Journal of Inorganic Chemistry, ;2012, 28(12): 2513-2522. shu

Mesoporous N-F Codoped TiO2 Photocatalyst with Visible-Light Response: Preparation Using Cellulose Template and Catalytic Performance

  • Corresponding author: CHEN Xiao-Yun, 
  • Received Date: 6 February 2012
    Available Online: 6 July 2012

    Fund Project: 国家自然科学基金(No.31000269) (No.31000269)福建省高等学校杰出青年科研人才培育计划(No.JA11072) (No.JA11072)福建省教育厅基金(No.JA00121)资助项目. (No.JA00121)

  • A yellow-colored and mesoporous N-F codoped TiO2 photocatalyst (TiONF) with visible-light response was prepared by a hydrolysis-precipitation method using cellulose as the template and TiCl4 as the precursor. The photocatalytic activity was evaluated through the photocatalytic degradation of phenol under ultraviolet (UV), artificial visible (Vis) and solar light irradiation, respectively. The catalysts were characterized by X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), X-ray diffraction (XRD), thermogravimetry-differential scanning calorimetry (TG/DSC), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and N2 adsorption-desorption. The results show that the TiONF obtained by using the cellulose template with suitable N-F doping exhibits higher activity under UV, Vis and solar light irradiation than that obtained without the cellulose template. N-F codoping can increase the amount of surface OH- of TiO2, and retards phase transformation. N-doping can form a new band-gap to extend the light response of TiO2 to visible region, F-doping can promote generation of oxygen vacancies on the surface of TiO2, and can increase surface acidity and Ti3+ of TiO2. The addition of the cellulose template can reduce the average grain size and increase the specific area of TiONF.
  • 加载中
    1. [1]

      [1] Yu J G, Zhou M H, Cheng B, et al. J. Mol. Catal. A: Chem., 2006,246(1/2):176-184

    2. [2]

      [2] Mori K, Maki K, Kawasaki S, et al. Chem. Eng. Sci., 2008, 63(20):5066-5070

    3. [3]

      [3] Bilgin V, Akyuz I, Ketenci E, et al. Appl. Surf. Sci., 2010, 256(22):6586-6591

    4. [4]

      [4] CHEN Ping(程萍), GU Ming-Yuan(顾明元), JIN Yan-Ping (金燕苹). Chem. Prog.(Huaxue Jinzhan), 2005,17(1):8-14

    5. [5]

      [5] LU Wen-Shen(鲁文升), XIAO Guang-Sen(肖光参), LI Dan-Zhen(李旦振), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2005,21(10):1495-1499

    6. [6]

      [6] Ihara T, Miyoshi M, Iriyama Y, et al. Appl. Catal. B, 2003, 42(4):403-409

    7. [7]

      [7] Kim C, Choi M, Jang J. Catal. Commun., 2010,11(5):378-382

    8. [8]

      [8] Lee S H, Yamasue E, Ishihara K N, et al. Appl. Catal. B: Environ., 2010,93(3/4):217-226

    9. [9]

      [9] Cantau C, Pigot T, Dupin J C, et al. J. Photochem. Photobiol. A, 2010,216(2/4):201-208

    10. [10]

      [10] CHEN Yan-Min(陈艳敏), ZHONG Jin(钟晶), CHEN Feng (陈锋), et al. Chin. J. Catal.(Cuihua Xuebao), 2010,31(1): 120-125

    11. [11]

      [11] TANG Yu-Chao(唐玉朝), HUANG Xian-Huai(黄显怀), YU Han-Qing(俞汉青), et al. Chem. Prog.(Huaxue Jinzhan), 2007,19(203):225-233

    12. [12]

      [12] CHEN Xiao-Yun(陈孝云), LU Dong-Fang(陆东芳), HUANG Jin-Feng(黄锦锋), et al. Acta Phys.-Chim. Sin.(Wuli Huaxue Xuebao), 2012,28(1):161-169

    13. [13]

      [13] CHEN Xiao-Yun(陈孝云), LU Dong-Fang(陆东芳), LIN Shu-Fang(林淑芳). Chin. J. Catal.(Cuihua Xuebao), 2012, 33(6):993-999

    14. [14]

      [14] Li X K, Yue B, Ye J H. Appl. Catal. A, 2010,390(1/2):195-200

    15. [15]

      [15] Marques P A A P, Trindade T, Neto C P. Compos. Sci. Technol., 2006,66(7/8):1038-1044

    16. [16]

      [16] Lu Q Y, Gao F, Komarneni S. Chem. Mater., 2006,18(1):159 -163

    17. [17]

      [17] Wang H T, Holmberg B A, Yan Y S. J. Am. Chem. Soc., 2003,125:9928-9929

    18. [18]

      [18] ZHANG Zhi-Teng(张志腾), YANG Li-Ming(杨立明), WANG Yu-Jun(王玉军), et al. Chem. Ind. Eng.(Huagong Xuebao), 2008,59(10):2638-2643

    19. [19]

      [19] ZENG Wei(曾威), WANG Jun-Ying(王俊影), DONG Lin(董 琳), et al. J. Tianjin University of Science & Technology (Tianjin Keji Daxue Xuebao), 2011,26(1):31-35

    20. [20]

      [20] Zhang L, Yan Z F, Qiao S Z, et al. J. Mol. Catal. China, 2008,22:315-320

    21. [21]

      [21] Li X S, Fryxell G E, Wang C M, et al. Inorg. Chem. Commun., 2006,9(1):7-9

    22. [22]

      [22] Williford R E, Fryxell G E, Li X S, et al. Microporous Mesoporous Mater., 2005,84(1/3):201-210

    23. [23]

      [23] Dujardin E, Blaseby M, Mann S. J. Mater. Chem., 2003,13 (4):696-699

    24. [24]

      [24] Zhou Y, Ding E Y, Li W D. Mater. Lett., 2007,61(28):5050-5052

    25. [25]

      [25] LI Wei(李伟), ZHAO Ying(赵莹), LIU Shou-Xin(刘守新). Chin. J. Catal.(Cuihua Xuebao), 2012,33(2):342-347

    26. [26]

      [26] CHEN Xiao Yun(陈孝云), CHEN Xing(陈星), HONG Shi-Wei(洪时伟), et al. Chin. J. Catal.(Cuihua Xuebao), 2011, 32(11):1762-1767

    27. [27]

      [27] Benesi H A. J. Phys. Chem., 1957,61:970-973

    28. [28]

      [28] LIU Shou-Xin(刘守新), CHEN Xiao-Yun(陈孝云), CHEN Xi(陈曦). Chin. J. Catal.(Cuihua Xuebao), 2006,27(8):697-702

    29. [29]

      [29] HUANG Dong-Gen(黄冬根), LIAO Shi-Jun(廖世军), DANG Zhi(党志). Acta Chim. Sin.(Huaxue Xuebao), 2006,64(17): 1805-1811

    30. [30]

      [30] LI Xiao-Hui(李晓辉), LIU Shou-Xin(刘守新). Acta Phys.-Chim. Sin.(Wuli Huaxue Xuebao), 2008,24(11):2019-2024

    31. [31]

      [31] Pelaez M, Cruz A A, Stathatos E, et al. Catal. Today, 2009, 144(1/2):19-25

    32. [32]

      [32] Li Y X, Jiang Y, Peng S Q, et al. J. Hazard. Mater., 2010, 182(1):90-96

    33. [33]

      [33] Ling Q C, Sun J Z, Zhou Q Y. Appl. Surf. Sci., 2008,254 (10):3236-3241

    34. [34]

      [34] Lin H, Kumon S, Kozuka H, et al. Thin. Solid Films, 1998, 315(1/2):266-272

    35. [35]

      [35] Fox M A, Dulay M T. Chem. Rev., 1993,93(1):341-357

    36. [36]

      [36] Hoffmann M R, Martin S T, Choi W Y, et al. Chem. Rev., 1995,95(1):69-96

    37. [37]

      [37] SU Ya-Ling(苏雅玲), LI Yi(李轶), DU Ying-Xun(杜瑛珣), et al. Acta Phys.-Chim. Sin.(Wuli Huaxue Xuebao), 2011, 27(4):939-945

    38. [38]

      [38] Yu J C, Yu J G, Ho W K, et al. Chem. Mater., 2002,14(9): 3808-3816

    39. [39]

      [39] CHEN Xiao-Yun(陈孝云), LU Dong-Fang(陆东芳), ZHANG Shu-Hui(张淑慧), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(2):307-313

    40. [40]

      [40] HUANG Lang-Huan(黄浪欢), CHEN Cai-Xuan(陈彩选), LIU Ying-Liang(刘应亮). Chin. J. Catal.(Cuihua Xuebao), 2006,27(12):1101-1106

    41. [41]

      [41] Khan S U M, Al-Shahry M, Ingter W B. Science, 2002,297 (27):2243-2244

    42. [42]

      [42] Li D, Haneda H, Labhsetwar N K, et al. Chem. Phys. Lett., 2005,401(4):579-584

    43. [43]

      [43] BAI Bo(白波), ZHAO Jin-Lian(赵景联). Chemistry(Huaxue Tongbao), 2005,10:776-780

    44. [44]

      [44] Choi E H, Hong S I, Moon D J. Catal. Lett., 2008,123(1/2): 84-89

    45. [45]

      [45] Zhang Z, Wang C, Zakaria R, et al. J. Phys. Chem. B, 1998, 102(52):10871-10878

    46. [46]

      [46] CHEN Xiao-Yun(陈孝云), LIU Shou-Xin(刘守新). Acta Phys.-Chim. Sin.(Wuli Huaxue Xuebao), 2007,23(5):701-708

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . 氮掺杂显著提升BiOBr光催化还原CO2性能研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    3. [3]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    4. [4]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    5. [5]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    6. [6]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    7. [7]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    8. [8]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    9. [9]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    10. [10]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    11. [11]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    12. [12]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    13. [13]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    14. [14]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    15. [15]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    16. [16]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    17. [17]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    18. [18]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    19. [19]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    20. [20]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

Metrics
  • PDF Downloads(0)
  • Abstract views(254)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return