Citation: KONG Ming, LIU Qing-cai, ZHAO Dong, REN Shan, MENG Fei. Synergy of NaCl and Hg0 on V2O5-WO3/TiO2 SCR catalysts[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(12): 1504-1509. shu

Synergy of NaCl and Hg0 on V2O5-WO3/TiO2 SCR catalysts

  • Corresponding author: REN Shan, 
  • Received Date: 18 May 2015
    Available Online: 21 July 2015

    Fund Project: 国家自然科学基金(51274263,51204220) (51274263,51204220)重庆市自然科学基金(cstc2013jjB0035)资助项目 (cstc2013jjB0035)

  • The nano V2O5-WO3/TiO2 catalysts were prepared. NaCl was loaded on the catalysts by impregnation and Hg0 was loaded by adsorption. The samples were characterized by XRD, SEM, BET, NH3-TPD and FT-IR measurements to investigate the effect of NaCl and Hg0 on the performance of V2O5-WO3/TiO2 SCR catalysts. Besides, the functional mechanism was proposed combining with previous conclusions. The results indicate that NaCl causes the agglomeration of catalysts, leading to the decrease of BET surface area. For NaCl poisoning catalysts, the deactivation is observed obviously with the increase of NaCl loadings. Brønsted acid sites (-V-OH) are neutralized by Na to ultimately form -V-O-Na and Cl-V-O-Na, resulting in the decline of catalytic activity. Hg0 shows no influence on the microstructure and phase composition of the catalysts. However, it can be adsorbed on the V active sites to weaken the De-NOx activities slightly. When NaCl and Hg0 exist simultaneously, Hg0 will combine with Cl that is introduced from NaCl to form HgCl or HgCl2 and partly replace Na, and -V-O…Hg or-V-O-Hg-Cl is produced finally.
  • 加载中
    1. [1]

      [1] ZHENG Y J, JENSEN A D, JOHNSSON J E. Laboratory investigation of selective catalytic reduction catalysts:Deactivation by potassium compounds and catalyst regeneration[J]. Ind Eng Chem Res, 2004, 43(4):941-947.

    2. [2]

      [2] 黄妍,童志权,伍斌,张俊丰. V2O5-CeO2/TiO2催化剂上低温氨选择性催化还原NO的性能[J].燃料化学学报, 2008, 36(5):616-620. (HUANG Yan, TONG Zhi-quan, WU Bin, ZHANG Jun-feng. Low temperature selective catalytic reduction of NO by ammonia over V2O5-CeO2/TiO2[J]. J Fuel Chem Technol, 2008, 36(5):616-620.)

    3. [3]

      [3] 胡石磊,叶代启,付名利. V2O5/TiO2-SiO2表面酸性对选择性催化还原NO及抗碱金属性能的影响[J].无机化学学报, 2008, 24(7):1113-1118. (HU Shi-lei, YE Dai-qi, FU Ming-li. Effect of surface acidity on NO reduction and resistance towards alkali poisoning over V2O5/TiO2-SiO2[J]. Chin J Inorg Chem, 2008, 24(7):1113-1118.)

    4. [4]

      [4] CASAGRANDE L, LIETTI L, NOVA I, FORZATTI P, BAIKER A. SCR of NO by NH3 over TiO2-supported V2O5-MoO3 catalysts:Reactivity and redox behavior[J]. Appl Catal B:Environ, 1999, 22(1):63-77.

    5. [5]

      [5] LIETTI L, FORZATTI P, BREGANI F. Steady-state and transient reactivity study of TiO2-supported V2O5-WO3 De-NOx catalysts:Relevance of the vanadium-tungsten interaction on the catalytic activity[J]. Ind Eng Chem Res, 1996, 35(11):3884-3892.

    6. [6]

      [6] LARSSON A C, EINVALL J, ANDERSSON A, SANALL M. Targeting by comparison with laboratory experiments the SCR catalyst deactivation process by potassium and zinc salts in a large-scale biomass combustion boiler[J]. Energy Fuels, 2006, 20(4):1398-1405.

    7. [7]

      [7] 朱崇兵,金保升,仲兆平,李锋,陈玲霞,翟俊霞. K2O对V2O3-WO3/TiO2催化剂的中毒作用[J].东南大学学报(自然科学版), 2008, 38(1):101-105. (ZHU Chong-bing, JIN Bao-sheng, ZHONG Zhao-ping, LI Feng, CHEN Ling-xia, ZHAI Jun-xia. Poisoning effect of K2O on V2O5-WO3/TiO2 catalysts[J]. J Southeast Univ (Nat Sci), 2008, 38(1):101-105.)

    8. [8]

      [8] KURT A C, MICHAEL S, HANS L. The formation of submicron aerosol particles, HCl and SO2 in straw-fired boilers[J]. J Aerosol Sci, 1998, 29(4):421-444.

    9. [9]

      [9] LISI L. Single and combined deactivating effect of alkali metals and HCl on commercial SCR catalysts[J]. Appl Catal B:Environ, 2004, 50(4):251-258.

    10. [10]

      [10] LIETTI L, FORZATTI P, RAMIS G. Potassium doping of vanadia/titania de-NOx catalysts:Surface characterization and reactivity study[J]. Appl Catal B:Environ, 1993, 3(1):13-35.

    11. [11]

      [11] KAMATA H, TAKAHASHI K, ODENBRAND C U I. The role of K2O in the selective reduction of NO with NH3 over a V2O5(WO3)/TiO2 commercial selective catalytic reduction catalyst[J]. J Mol Catal A:Chem, 1999, 139(2/3):189-198.

    12. [12]

      [12] 胡石磊,叶代启.钾对催化剂选择性催化还原氮氧化物的性能影响特性研究[J].环境污染与防治, 2008, 30(7):43-46. (HU Shi-lei, YE Dai-qi. Effect of potassium on the selective reduction of NO by NH3 on V2O5 catalysts[J]. Environ Pollut Control, 2008, 30(7):43-46.)

    13. [13]

      [13] ZHANG X L, HUANG Z G, LIU Z Y. Effect of KCl on selective catalytic reduction of NO with NH3 over a V2O5/AC catalyst[J]. Catal Commun, 2008, 9(5):842-846.

    14. [14]

      [14] KAMATA H, UENO S, NAITO T. Mercury oxidation over the V2O5(WO3)/TiO2 commercial SCR catalyst[J]. Ind Eng Chem Res, 2008, 47(21):8136-8141.

    15. [15]

      [15] GAO W, LIU Q C, WU C Y, LI H L, LI Y, YANG J, WU G F. Kinetics of mercury oxidation in the presence of hydrochloric acid and oxygen over a commercial SCR catalyst[J]. Chem Eng J, 2013, 220:53-60.

    16. [16]

      [16] STOLLE R, KOESER H, GUTBERLET H. Oxidation and reduction of mercury by SCR DeNOx catalysts under flue gas conditions in coal fired power plants[J]. Appl Catal B:Environ, 2014, 144:486-497.

    17. [17]

      [17] TOPSØE N Y, TOPSØE H, DUMESIC J A. Vanadia/titania catalysts for selective catalytic reduction (SCR) of nitric oxide by ammonia. I. Combined temperature programmed in situ FT-IR and on-line mass spectroscopy studies[J]. J Catal, 1995, 151:226-240.

    18. [18]

      [18] TOPSØE N Y, DUMESIC J A, TOPSØE H. Vanadia/titania catalysts for selective catalytic reduction (SCR) of nitric oxide by ammonia. Ⅱ. Studies of active sites and formulation of catalytic cycles[J]. J Catal, 1995, 151:241-252.

    19. [19]

      [19] HE S, ZHOU J S, ZHU Y Q, LUO Z Y, NI M J, CEN K F. Mercury oxidation over a vanadia-based selective catalytic reduction catalyst[J]. Energy Fuels, 2009, 23:253-259.

    20. [20]

      [20] SANDRA S, THOMAS H, HEINZ K. Adsorption and oxidation of mercury in tail-end SCR De-NOx plants-Bench scale investigations and speciation experiments[J]. Appl Catal B:Environ, 2008, 79:286-295.

    21. [21]

      [21] NIKSA S, FUJIWARA N. A predictive mechanism for mercury oxidation of selective catalytic reduction catalysts under coal-derived flue gas[J]. J Air Waste Manage, 2005, 55:1866-1875.

    22. [22]

      [22] YUJIN E, SEOK H J, THANH A N, JINSOO K, TAI G L. Heterogeneous mercury reaction on a selective catalytic reduction (SCR) catalyst[J]. Catal Lett, 2008, 121:219-225.

    23. [23]

      [23] LIU J, HE M F, ZHENG C G, CHANG M. Density functional theory study of mercury adsorption on V2O5(001) surface with implications for oxidation[J]. Proc Combust Inst, 2011, 33:2771-2777.

  • 加载中
    1. [1]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    4. [4]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    7. [7]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    8. [8]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    9. [9]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    10. [10]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    11. [11]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    12. [12]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    13. [13]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    14. [14]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    15. [15]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    16. [16]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    19. [19]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

    20. [20]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

Metrics
  • PDF Downloads(0)
  • Abstract views(314)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return