Citation: YANG Li-xia, LIU Dan, LIU Dao-sheng, SUN Cheng-zhi, SEO Hwi-min, GUI Jian-zhou, PARK Yong-ki. TiO2 modified magnesium-based adsorbents for intermediate-temperature CO2 capture[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(12): 1498-1503. shu

TiO2 modified magnesium-based adsorbents for intermediate-temperature CO2 capture

  • Corresponding author: LIU Dan,  GUI Jian-zhou,  PARK Yong-ki, 
  • Received Date: 18 June 2015
    Available Online: 28 October 2015

    Fund Project: 国家自然科学基金(21576211) (21576211)新世纪优秀人才支持计划(NCET-11-1011) (NCET-11-1011)天津市应用基础与前沿技术研究计划(13JCYBJC41600) (13JCYBJC41600)韩国教育科技部(KCCS2020Project)资助项目 (KCCS2020Project)

  • A series of TiO2-modified magnesium-based sorbents, for thermo-swing absorption process in intermediate-temperature working range (250~500℃), were prepared by precipitation, and characterized by XRD, SEM and N2 absorption etc. The sorbents were evaluated by dynamic absorption-desorption cyclic tests. With the increase of TiO2 amount, the crystallinity of the sample decreased, and the BET surface area also decreased due to the formation of MgTiO3.When the TiO2 content was 2%, uniform particle size (nanostructured spheres with 4.0~5.0μm in diameter) was obtained. The absorption capacity was stabilized from the second cycle of the absorption-desorption cyclic test, and the capacity could reach 6.64% after 50 cycles, suggesting good stability of the sorbent. This should be attributed to the formation of MgTiO3, which provided a rigid framework for the sample and improved the dispersion of active species.
  • 加载中
    1. [1]

      [1] RAUPACH M R, MARLAND G, CIAIS P, LE Q C, CANADELL J G, KLEPPER G, FIELD C B. Global and regional drivers of accelerating CO2 emissions[J]. Proc Natl Acad Sci USA, 2007, 104(24):10288-10293.

    2. [2]

      [2] STEWART C, HESSAMI M. A study of methods of carbon dioxide capture and sequestration-the sustainability of a bioreactor approach[J]. Energy Convers Manage, 2005, 46(3):403-420.

    3. [3]

      [3] WANG Q, LUO J, ZHONG Z, BORGNA A. CO2 capture by solid adsorbents and their applications:Current status and new trends[J]. Energy Environ Sci, 2010, 4(1):42-55.

    4. [4]

      [4] ROCHELLE G T. Amine scrubbing for CO2 capture[J]. Science, 2009, 325(5948):1652-1654.

    5. [5]

      [5] LEE S Y, PARK S J. A review on solid adsorbents for carbon dioxide capture[J]. J Ind Eng Chem, 2015, 23:1-11.

    6. [6]

      [6] LIU L, SANDERS E S, KULKARNI S S, HASSE D J, KOROS W J. Sub-ambient temperature flue gas carbon dioxide capture via Matrimids hollow fiber membranes[J]. J Membr Sci, 2014, 465:49-55.

    7. [7]

      [7] VOICE A K, ROCHELLE G T. Inhibitors of monoethanolamine oxidation in CO2 capture processes[J]. Ind Eng Chem Res, 2014, 53(42):16222-16228.

    8. [8]

      [8] GAZZZNI M, TURI D M, GHONIEM A F, ENNIO M, GIAMPAOLO M. Techno-economic assessment of two novel feeding systems for a dry-feed gasifier in an IGCC plant with Pd-membranes for CO2 capture[J]. Int J Greenhouse Gas Control, 2014, 25:62-78.

    9. [9]

      [9] ANANTHARAMAN R, BERSTAD D, ROUSSANALY S. Techno-economic performance of a hybrid membrane-liquefaction process for post-combustion CO2 capture[J]. Energy Procedia, 2014, 61:1244-1247.

    10. [10]

      [10] ZHAO C, CHEN X, ZHAO C, WU Y, DONG W. K2CO3/Al2O3 for capturing CO2 in flue gas from power plants. part 3:CO2 capture behaviors of K2CO3/Al2O3 in a bubbling fluidized-bed reactor[J]. Energy Fuels, 2012, 26(5):3062-3068.

    11. [11]

      [11] ZHAO C, CHEN X, ZHAO C. Carbonation behavior and the reaction kinetic of a new dry potassium-based sorbent for CO2 capture[J]. Ind Eng Chem Res, 2012, 51(44):14361-14366.

    12. [12]

      [12] TOMKUTE V, SOLHEIM A, OLSEN E. CO2 capture by CaO in molten CaF2-CaCl2:Optimization of the process and cyclability of CO2 capture[J]. Energy Fuels, 2014, 28(8):5345-5353.

    13. [13]

      [13] DUTCHER B, FAN M H, RUSSELL A G. Amine-based CO2 capture technology development from the beginning of 2013-A review[J]. ACS Appl Mater Interfaces, 2015, 7(4):2137-2148.

    14. [14]

      [14] DONG W, CHEN X, YU F, WU Y. Na2CO3/MgO/Al2O3 solid sorbents for low-temperature CO2 capture[J]. Energy Fuels, 2015, 29(2):968-973.

    15. [15]

      [15] LI L, WEN X, FU X, WANG F, ZHAO N, XIAO F, WEI W, SUN Y. MgO/Al2O3 sorbent for CO2 capture[J]. Energy Fuels, 2010, 24(10):5773-5780.

    16. [16]

      [16] LI L, ZHANG B, WANG F, ZHAO N, XIAO F, WEI W, SUN Y. Study of the novel KMgAl sorbents for CO2 capture[J]. Energy Fuels, 2013, 27(9):5388-5396.

    17. [17]

      [17] LEE S C, CHAE H J, LEE S J, CHOI B Y, YI C K, LEE J B, RYU C K, KIM J C. Development of regenerable MgO-based sorbent promoted with K2CO3 for CO2 capture at low temperatures[J]. Environ Sci Technol, 2008, 42(8):2736-2741.

    18. [18]

      [18] FISHER J C, SIRIWARDANE R V. Mg(OH)2 for CO2 Capture from high-pressure, moderate-temperature gas streams[J]. Energy Fuels, 2014, 28(9):5936-5941.

    19. [19]

      [19] 左臣盛,周思宇,孙成志,王兴之,刘道胜,徐煇旼,朴容起,桂建舟,刘丹.变温镁基CO2吸附剂的制备及应用(一)Na/Mg摩尔比[J].燃料化学学报, 2014, 42(7):884-889. (ZUO Chen-sheng, ZHOU Si-yu, SUN Cheng-zhi, WANG Xing-zhi, LIU Dao-sheng, SEO Hwi-min, PARK Yong-Ki, GUI Jian-zhou, LIU Dan. Preparation and application of magnesium-based CO2 sorbent for temperature swing absorption(I)Na/Mg mole ratio[J]. J Fuel Chem Technol, 2014, 42(7):884-889.)

    20. [20]

      [20] PABST A. The crystallography and structure of eitelite, Na2Mg(CO3)2[J]. Am Mineral, 1973, 58:211-217.

    21. [21]

      [21] LEE S C, KWON Y M, PARK Y H, LEE W S, PARK J J, RYU C K, YI C K, KIM J C. Structure effects of potassium-based TiO2 sorbents on the CO2 capture capacity[J]. Top Catal, 2010, 53(7):641-647.

  • 加载中
    1. [1]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Yu Peng Jiawei Chen Yue Yin Yongjie Cao Mochou Liao Congxiao Wang Xiaoli Dong Yongyao Xia . 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-. doi: 10.1016/j.actphy.2025.100087

    5. [5]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    6. [6]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    7. [7]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    8. [8]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    9. [9]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    10. [10]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    11. [11]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    14. [14]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    15. [15]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    16. [16]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    17. [17]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    18. [18]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    19. [19]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

Metrics
  • PDF Downloads(0)
  • Abstract views(337)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return