Citation:
YANG Li-xia, LIU Dan, LIU Dao-sheng, SUN Cheng-zhi, SEO Hwi-min, GUI Jian-zhou, PARK Yong-ki. TiO2 modified magnesium-based adsorbents for intermediate-temperature CO2 capture[J]. Journal of Fuel Chemistry and Technology,
;2015, 43(12): 1498-1503.
-
A series of TiO2-modified magnesium-based sorbents, for thermo-swing absorption process in intermediate-temperature working range (250~500℃), were prepared by precipitation, and characterized by XRD, SEM and N2 absorption etc. The sorbents were evaluated by dynamic absorption-desorption cyclic tests. With the increase of TiO2 amount, the crystallinity of the sample decreased, and the BET surface area also decreased due to the formation of MgTiO3.When the TiO2 content was 2%, uniform particle size (nanostructured spheres with 4.0~5.0μm in diameter) was obtained. The absorption capacity was stabilized from the second cycle of the absorption-desorption cyclic test, and the capacity could reach 6.64% after 50 cycles, suggesting good stability of the sorbent. This should be attributed to the formation of MgTiO3, which provided a rigid framework for the sample and improved the dispersion of active species.
-
-
-
[1]
[1] RAUPACH M R, MARLAND G, CIAIS P, LE Q C, CANADELL J G, KLEPPER G, FIELD C B. Global and regional drivers of accelerating CO2 emissions[J]. Proc Natl Acad Sci USA, 2007, 104(24):10288-10293.
-
[2]
[2] STEWART C, HESSAMI M. A study of methods of carbon dioxide capture and sequestration-the sustainability of a bioreactor approach[J]. Energy Convers Manage, 2005, 46(3):403-420.
-
[3]
[3] WANG Q, LUO J, ZHONG Z, BORGNA A. CO2 capture by solid adsorbents and their applications:Current status and new trends[J]. Energy Environ Sci, 2010, 4(1):42-55.
-
[4]
[4] ROCHELLE G T. Amine scrubbing for CO2 capture[J]. Science, 2009, 325(5948):1652-1654.
-
[5]
[5] LEE S Y, PARK S J. A review on solid adsorbents for carbon dioxide capture[J]. J Ind Eng Chem, 2015, 23:1-11.
-
[6]
[6] LIU L, SANDERS E S, KULKARNI S S, HASSE D J, KOROS W J. Sub-ambient temperature flue gas carbon dioxide capture via Matrimids hollow fiber membranes[J]. J Membr Sci, 2014, 465:49-55.
-
[7]
[7] VOICE A K, ROCHELLE G T. Inhibitors of monoethanolamine oxidation in CO2 capture processes[J]. Ind Eng Chem Res, 2014, 53(42):16222-16228.
-
[8]
[8] GAZZZNI M, TURI D M, GHONIEM A F, ENNIO M, GIAMPAOLO M. Techno-economic assessment of two novel feeding systems for a dry-feed gasifier in an IGCC plant with Pd-membranes for CO2 capture[J]. Int J Greenhouse Gas Control, 2014, 25:62-78.
-
[9]
[9] ANANTHARAMAN R, BERSTAD D, ROUSSANALY S. Techno-economic performance of a hybrid membrane-liquefaction process for post-combustion CO2 capture[J]. Energy Procedia, 2014, 61:1244-1247.
-
[10]
[10] ZHAO C, CHEN X, ZHAO C, WU Y, DONG W. K2CO3/Al2O3 for capturing CO2 in flue gas from power plants. part 3:CO2 capture behaviors of K2CO3/Al2O3 in a bubbling fluidized-bed reactor[J]. Energy Fuels, 2012, 26(5):3062-3068.
-
[11]
[11] ZHAO C, CHEN X, ZHAO C. Carbonation behavior and the reaction kinetic of a new dry potassium-based sorbent for CO2 capture[J]. Ind Eng Chem Res, 2012, 51(44):14361-14366.
-
[12]
[12] TOMKUTE V, SOLHEIM A, OLSEN E. CO2 capture by CaO in molten CaF2-CaCl2:Optimization of the process and cyclability of CO2 capture[J]. Energy Fuels, 2014, 28(8):5345-5353.
-
[13]
[13] DUTCHER B, FAN M H, RUSSELL A G. Amine-based CO2 capture technology development from the beginning of 2013-A review[J]. ACS Appl Mater Interfaces, 2015, 7(4):2137-2148.
-
[14]
[14] DONG W, CHEN X, YU F, WU Y. Na2CO3/MgO/Al2O3 solid sorbents for low-temperature CO2 capture[J]. Energy Fuels, 2015, 29(2):968-973.
-
[15]
[15] LI L, WEN X, FU X, WANG F, ZHAO N, XIAO F, WEI W, SUN Y. MgO/Al2O3 sorbent for CO2 capture[J]. Energy Fuels, 2010, 24(10):5773-5780.
-
[16]
[16] LI L, ZHANG B, WANG F, ZHAO N, XIAO F, WEI W, SUN Y. Study of the novel KMgAl sorbents for CO2 capture[J]. Energy Fuels, 2013, 27(9):5388-5396.
-
[17]
[17] LEE S C, CHAE H J, LEE S J, CHOI B Y, YI C K, LEE J B, RYU C K, KIM J C. Development of regenerable MgO-based sorbent promoted with K2CO3 for CO2 capture at low temperatures[J]. Environ Sci Technol, 2008, 42(8):2736-2741.
-
[18]
[18] FISHER J C, SIRIWARDANE R V. Mg(OH)2 for CO2 Capture from high-pressure, moderate-temperature gas streams[J]. Energy Fuels, 2014, 28(9):5936-5941.
-
[19]
[19] 左臣盛,周思宇,孙成志,王兴之,刘道胜,徐煇旼,朴容起,桂建舟,刘丹.变温镁基CO2吸附剂的制备及应用(一)Na/Mg摩尔比[J].燃料化学学报, 2014, 42(7):884-889. (ZUO Chen-sheng, ZHOU Si-yu, SUN Cheng-zhi, WANG Xing-zhi, LIU Dao-sheng, SEO Hwi-min, PARK Yong-Ki, GUI Jian-zhou, LIU Dan. Preparation and application of magnesium-based CO2 sorbent for temperature swing absorption(I)Na/Mg mole ratio[J]. J Fuel Chem Technol, 2014, 42(7):884-889.)
-
[20]
[20] PABST A. The crystallography and structure of eitelite, Na2Mg(CO3)2[J]. Am Mineral, 1973, 58:211-217.
-
[21]
[21] LEE S C, KWON Y M, PARK Y H, LEE W S, PARK J J, RYU C K, YI C K, KIM J C. Structure effects of potassium-based TiO2 sorbents on the CO2 capture capacity[J]. Top Catal, 2010, 53(7):641-647.
-
[1]
-
-
-
[1]
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
-
[2]
Xiaofei Liu , He Wang , Li Tao , Weimin Ren , Xiaobing Lu , Wenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008
-
[3]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[4]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[5]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[6]
Yu Peng , Jiawei Chen , Yue Yin , Yongjie Cao , Mochou Liao , Congxiao Wang , Xiaoli Dong , Yongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087
-
[7]
Shengjuan Huo , Xiaoyan Zhang , Xiangheng Li , Xiangning Li , Tianfang Chen , Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127
-
[8]
Ruiqing LIU , Wenxiu LIU , Kun XIE , Yiran LIU , Hui CHENG , Xiaoyu WANG , Chenxu TIAN , Xiujing LIN , Xiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441
-
[9]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[10]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[11]
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
-
[12]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[13]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[14]
Hao Chen , Dongyue Yang , Gang Huang , Xinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059
-
[15]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[16]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[17]
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
-
[18]
Zixuan Zhao , Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040
-
[19]
Honghong Zhang , Zhen Wei , Derek Hao , Lin Jing , Yuxi Liu , Hongxing Dai , Weiqin Wei , Jiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073
-
[20]
Yueguang Chen , Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(357)
- HTML views(28)