Citation:
WANG Yi-shuang, CHEN Ming-qiang, LIU Shao-min, YANG Zhong-lian, SHEN Chao-ping, LIU Ke. Hydrogen production via catalytic steam reforming of bio-oil model compounds over NiO-Fe2O3-loaded palygouskite[J]. Journal of Fuel Chemistry and Technology,
;2015, 43(12): 1470-1475.
-
A series of NiO-Fe2O3 catalysts loaded on palygouskite were prepared by co-precipitation method and used in the catalytic steam reforming to produce hydrogen in a self-made three-stage fixed bed reactor. The loading of NiO-Fe2O3, reaction temperature and ratio of steam to carbon (S/C) on hydrogen production were investigated, with a water-soluble mixture of acetic acid, ethanol and phenol as the bio-oil model compounds. The results indicated that under the optimum conditions, viz., 650℃, an S/C ratio of 8~10 and 50%NiO-50%Fe2O3/PG as the catalyst, the relative content of H2 reaches 66.15% in the gaseous product.
-
-
-
[1]
[1] PENA M, GOMEZ J, FIERRO J. New catalytic routes for syngas and hydrogen production[J]. Appl Catal A:Gen, 1996, 144(2):7-57.
-
[2]
[2] 林鹏,虞亚辉,罗永浩,陈祎.生物质热化学制氢的研究进展[J].化学反应工程与工艺, 2007, 23(3):267-272. (LIN Peng, YU Ya-hui, LUO Yong-hao, CHEN Yi. The research progress of hydrogen production via biomass thermochemistry[J]. Chem React Eng Technol, 2007, 23(3):267-272.)
-
[3]
[3] BOSSEL U. The future of the hydrogen economy:Bright or bleak?[J]. Cogener Compet Power J, 2009, 18(3):29-70.
-
[4]
[4] LEVIN D B, CHAHINE R. Challenges for renewable hydrogen production from biomass[J]. Int J Hydrogen Energy, 2010, 35(10):4962-4969.
-
[5]
[5] HERACLEOUS E. Well-to-Wheels analysis of hydrogen production from bio-oil reforming for use in internal combustion engines[J]. Fuel Energy Abstr, 2011, 36(18):11501-11511.
-
[6]
[6] BIMBELA F, OLIVA M, RUIZ J, ARAUZO J. Hydrogen production via catalytic steam reforming of the aqueous fraction of bio-oil using nickel-based coprecipitated catalysts[J]. Int J Hydrogen Energy, 2013, 38(34):14476-14487.
-
[7]
[7] XIE H, YU Q, WEI M, DUAN W, YAO X, QIN Q, ZUO Z. Hydrogen production from steam reforming of simulated bio-oil over Ce-Ni/Co catalyst with in continuous CO2 capture[J]. Int J Hydrogen Energy, 2015, 40(3):1420-1428.
-
[8]
[8] XIAO R, ZHANG S, PENG S, SHEN D, LIU K. Use of heavy fraction of bio-oil as fuel for hydrogen production in iron-based chemical looping process[J]. Int J Hydrogen Energy, 2014, 39:19955-19969.
-
[9]
[9] DING N, AZARGOHAR R, DALAI A K, KOZINSKI J A. Catalytic gasification of cellulose and pinewood to H2 in supercritical water[J]. Fuel, 2014, 118(1):416-425.
-
[10]
[10] RESENDE K A, ÁVILA-NETO C N, RABELO-NETO R C, NORONHA F B, HORI C E. Hydrogen production by reforming of acetic acid using La-Ni type perovskites partially substituted with Sm and Pr[J]. Catal Today, 2015, 242:71-79.
-
[11]
[11] YAO D, WU C, YANG H, HU Q, NAHIL M A, CHEN H, WILLIAMS P T. Hydrogen production from catalytic reforming of the aqueous fraction of pyrolysis bio-oil with modified Ni-Al catalysts[J]. Int J Hydrogen Energy, 2014, 39(27):14642-14652.
-
[12]
[12] WANG D, CZERNIK S, MONTANE D, MANN M, CHORNET E. Biomass to hydrogen via fast pyrolysis and catalytic steam reforming of the pyrolysis oil or its fractions[J]. Ind Eng Chem Res, 1997, 36(5):1507-1518.
-
[13]
[13] XIE H, YU Q, WANG K, SHI X, LI X. Thermodynamic analysis of hydrogen production from model compounds of bio-oil through steam reforming[J]. Environ Prog Sustainable Energy, 2014, 33(3):1008-1016.
-
[14]
[14] WANG D, MONTANE D, CHORNET E. Catalytic steam reforming of biomass-derived oxygenates:Acetic acid and hydroxyacetaldehyde[J]. Appl Catal A:Gen, 1996, 143(2):245-270.
-
[15]
[15] 林少斌.用纳米SiO2担载的Ni-Cu-Zn催化剂对电催化水蒸气重整生物油制氢的研究[D].合肥:中国科学技术大学, 2010. (LIN Shao-bing. Research on the hydrogen production from Bio-oil by electrochemical catalytic steam reforming using Ni-Cu-Zn-nano SiO2[D]. Hefei:University of Science and Technology of China, 2010.)
-
[16]
[16] MORAES T, NETO R, RIBEIRO M, MATTOS L, KOURTELESIS M, LADAS S, VERYKIOS X, NORONHA F. The study of the performance of PtNi/CeO2-nanocube catalysts for low temperature steam reforming of ethanol[J]. Catal Today, 2015, 242:35-49.
-
[17]
[17] BUSSI J, BESPALKO N, VEIGA S, AMAYA A, FACCIO R, ABELLO M. The preparation and properties of Ni-La-Zr catalysts for the steam reforming of ethanol[J]. Catal Commun, 2008, 10(1):33-38.
-
[18]
[18] GALLEGOS-SUAREZ E, GUERRERO-RUI Z, FERNANDEZ-GARCIA M, RODRIGUEZ-RAMOS I, KUBACKA A. Efficient and stable Ni-Ce glycerol reforming catalysts:Chemical imaging using X-ray electron and scanning transmission microscopy[J]. Appl Catal B:Environ, 2015, 165:139-148.
-
[19]
[19] NOGUEIRA F, ASSAF P, CARVALHO H, ASSAF E. Catalytic steam reforming of acetic acid as a model compound of bio-oil[J]. Appl Catal B:Environ, 2014, 160(7):188-199.
-
[20]
[20] HE Z, YANG M, WANG X, ZHAO Z, DUAN A. Effect of the transition metal oxide supports on hydrogen production from bio-ethanol reforming[J]. Catal Today, 2012, 194(1):2-8.
-
[21]
[21] SCOTT M, GOEFFROY M, CHIU W, BLACKFORD M, IDRISS H. Hydrogen production from ethanol over Rh-Pd/CeO2 catalysts[J]. Top Catal, 2008, 51(1/4):13-21.
-
[22]
[22] CHIOU J, WANG C, YANG S, BI J, SHEN C, WANG C. Reforming of ethanol to produce hydrogen over PtRuMg/ZrO2 catalyst[J]. J Nanosci Nanotechnol, 2012, 2012:1-6.
-
[23]
[23] XIAO R, ZHANG S, PENG S, SHEN D, LIU K. Use of heavy fraction of bio-oil as fuel for hydrogen production in iron-based chemical looping process[J]. Int J Hydrogen Energy, 2014, 39:19955-19969.
-
[24]
[24] LIU S, CHEN M, LEI C, YANG Z, ZHU C, WANG J, CHEN M. Catalytic steam reforming of bio-oil aqueous fraction for hydrogen production over Ni-Mo supported on modified sepiolite catalysts[J]. Int J Hydrogen Energy, 2013, 38(10):3948-3955.
-
[25]
[25] 陈天虎,彭书传,黄川徽,史晓莉,冯有亮.从苏皖凹凸棒石粘土制备纯凹凸棒石[J].硅酸盐学报, 2004, 32(8):965-969. (CHEN Tian-hu, PENG Shu-zhuan, HUANG Chuan-wei, SHI Xiao-li, FENG You-liang. Preparation of pure palygorskite from palygorskite claysin JiangSu and AnHui[J]. J Chin Ceram Soc, 2004, 32(8):965-969.)
-
[26]
[26] CHEN T, XU H, LU A, XU X, PENG S, YUE S. Direct evidence of transformation from smectite to palygorskite:TEM investigation[J]. Sci China, 2004, 47(11):985-994.
-
[27]
[27] WANG L, KOIKE M, KOSO S. Catalytic performance and characterization of Ni-Fe catalysts for the steam reforming of tar from biomass pyrolysis[J]. Proc Jpi, 2010:120.
-
[28]
[28] HOU T, ZHANG S, CHEN Y, WANG D, CAI W. Hydrogen production from ethanol reforming:Catalysts and reaction mechanism[J]. Renew Sust Energy Rev, 2015, 44:132-148.
-
[29]
[29] ABELLO S, BOLSHAK E, MONTANE D. Ni-Fe catalysts derived from hydrotalcite-like precursors for hydrogen production by ethanol steam reforming[J]. Appl Catal A:Gen, 2013, 450(2):261-274.
-
[30]
[30] LAOSIRIPOJANA N, SUTTHISRIPOK W, CHAROJROCHKUL S, ASSABUMRUNGRAT S. Development of Ni-Fe bimetallic based catalysts for biomass tar cracking/reforming:Effects of catalyst support and co-fed reactants on tar conversion characteristics[J]. Fuel Process Technol, 2014, 127(11):26-32.
-
[31]
[31] FU P, YI W, LI Z, BAI X, ZHANG A, LI Y, LI Z. Investigation on hydrogen production by catalytic steam reforming of maize stalk fast pyrolysis bio-oil[J]. Int J Hydrogen Energy, 2014, 39(26):13962-13971.
-
[32]
[32] DOMINE M, IOJOIU E, DAVIDIAN T, GUILHAUME, MIRODATOS C. Hydrogen production from biomass-derived oil over monolithic Pt-and Rh-based catalysts using steam reforming and sequential cracking processes[J]. Catal Today, 2008, 133(2):565-573.
-
[33]
[33] IWASA N, YAMANE T, ARAI M. Influence of alkali metal modification and reaction conditions on the catalytic activity and stability of Ni containing smectite-type material for steam reforming of acetic acid[J]. Int J Hydrogen Energy, 2011, 36(10):5904-5911.
-
[34]
[34] WANG S, FAN Z, CAI Q, LI X, ZHU L, WANG Q, LUO Z. Catalytic steam reforming of bio-oil model compounds for hydrogen production over coal ash supported Ni catalyst[J]. Int J Hydrogen Energy, 2014, 39(5):2018-2025.
-
[1]
-
-
-
[1]
Mingjie Lei , Wenting Hu , Kexin Lin , Xiujuan Sun , Haoshen Zhang , Ye Qian , Tongyue Kang , Xiulin Wu , Hailong Liao , Yuan Pan , Yuwei Zhang , Diye Wei , Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083
-
[2]
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049
-
[3]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[4]
Hao GUO , Tong WEI , Qingqing SHEN , Anqi HONG , Zeting DENG , Zheng FANG , Jichao SHI , Renhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085
-
[5]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[6]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[7]
Yongmei Liu , Lisen Sun , Yongmei Hao , Zhanxiang Liu , Shuyong Zhang . Innovative Design of Chemistry Experiment Courses with Ideological and Political Education: A Case Study of Catalytic Hydrogen Production Experiments. University Chemistry, 2025, 40(5): 224-229. doi: 10.12461/PKU.DXHX202412144
-
[8]
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032
-
[9]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[10]
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084
-
[11]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
-
[12]
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054
-
[13]
Junqing WEN , Ruoqi WANG , Jianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243
-
[14]
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068
-
[15]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[16]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[17]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[18]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[19]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[20]
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(330)
- HTML views(16)