Citation: WANG Yi-shuang, CHEN Ming-qiang, LIU Shao-min, YANG Zhong-lian, SHEN Chao-ping, LIU Ke. Hydrogen production via catalytic steam reforming of bio-oil model compounds over NiO-Fe2O3-loaded palygouskite[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(12): 1470-1475. shu

Hydrogen production via catalytic steam reforming of bio-oil model compounds over NiO-Fe2O3-loaded palygouskite

  • Corresponding author: CHEN Ming-qiang, 
  • Received Date: 7 July 2015
    Available Online: 28 August 2015

    Fund Project: 国家自然科学基金(21376007) (21376007)国家科技支撑计划项目(2014BAD02B03)资助 (2014BAD02B03)

  • A series of NiO-Fe2O3 catalysts loaded on palygouskite were prepared by co-precipitation method and used in the catalytic steam reforming to produce hydrogen in a self-made three-stage fixed bed reactor. The loading of NiO-Fe2O3, reaction temperature and ratio of steam to carbon (S/C) on hydrogen production were investigated, with a water-soluble mixture of acetic acid, ethanol and phenol as the bio-oil model compounds. The results indicated that under the optimum conditions, viz., 650℃, an S/C ratio of 8~10 and 50%NiO-50%Fe2O3/PG as the catalyst, the relative content of H2 reaches 66.15% in the gaseous product.
  • 加载中
    1. [1]

      [1] PENA M, GOMEZ J, FIERRO J. New catalytic routes for syngas and hydrogen production[J]. Appl Catal A:Gen, 1996, 144(2):7-57.

    2. [2]

      [2] 林鹏,虞亚辉,罗永浩,陈祎.生物质热化学制氢的研究进展[J].化学反应工程与工艺, 2007, 23(3):267-272. (LIN Peng, YU Ya-hui, LUO Yong-hao, CHEN Yi. The research progress of hydrogen production via biomass thermochemistry[J]. Chem React Eng Technol, 2007, 23(3):267-272.)

    3. [3]

      [3] BOSSEL U. The future of the hydrogen economy:Bright or bleak?[J]. Cogener Compet Power J, 2009, 18(3):29-70.

    4. [4]

      [4] LEVIN D B, CHAHINE R. Challenges for renewable hydrogen production from biomass[J]. Int J Hydrogen Energy, 2010, 35(10):4962-4969.

    5. [5]

      [5] HERACLEOUS E. Well-to-Wheels analysis of hydrogen production from bio-oil reforming for use in internal combustion engines[J]. Fuel Energy Abstr, 2011, 36(18):11501-11511.

    6. [6]

      [6] BIMBELA F, OLIVA M, RUIZ J, ARAUZO J. Hydrogen production via catalytic steam reforming of the aqueous fraction of bio-oil using nickel-based coprecipitated catalysts[J]. Int J Hydrogen Energy, 2013, 38(34):14476-14487.

    7. [7]

      [7] XIE H, YU Q, WEI M, DUAN W, YAO X, QIN Q, ZUO Z. Hydrogen production from steam reforming of simulated bio-oil over Ce-Ni/Co catalyst with in continuous CO2 capture[J]. Int J Hydrogen Energy, 2015, 40(3):1420-1428.

    8. [8]

      [8] XIAO R, ZHANG S, PENG S, SHEN D, LIU K. Use of heavy fraction of bio-oil as fuel for hydrogen production in iron-based chemical looping process[J]. Int J Hydrogen Energy, 2014, 39:19955-19969.

    9. [9]

      [9] DING N, AZARGOHAR R, DALAI A K, KOZINSKI J A. Catalytic gasification of cellulose and pinewood to H2 in supercritical water[J]. Fuel, 2014, 118(1):416-425.

    10. [10]

      [10] RESENDE K A, ÁVILA-NETO C N, RABELO-NETO R C, NORONHA F B, HORI C E. Hydrogen production by reforming of acetic acid using La-Ni type perovskites partially substituted with Sm and Pr[J]. Catal Today, 2015, 242:71-79.

    11. [11]

      [11] YAO D, WU C, YANG H, HU Q, NAHIL M A, CHEN H, WILLIAMS P T. Hydrogen production from catalytic reforming of the aqueous fraction of pyrolysis bio-oil with modified Ni-Al catalysts[J]. Int J Hydrogen Energy, 2014, 39(27):14642-14652.

    12. [12]

      [12] WANG D, CZERNIK S, MONTANE D, MANN M, CHORNET E. Biomass to hydrogen via fast pyrolysis and catalytic steam reforming of the pyrolysis oil or its fractions[J]. Ind Eng Chem Res, 1997, 36(5):1507-1518.

    13. [13]

      [13] XIE H, YU Q, WANG K, SHI X, LI X. Thermodynamic analysis of hydrogen production from model compounds of bio-oil through steam reforming[J]. Environ Prog Sustainable Energy, 2014, 33(3):1008-1016.

    14. [14]

      [14] WANG D, MONTANE D, CHORNET E. Catalytic steam reforming of biomass-derived oxygenates:Acetic acid and hydroxyacetaldehyde[J]. Appl Catal A:Gen, 1996, 143(2):245-270.

    15. [15]

      [15] 林少斌.用纳米SiO2担载的Ni-Cu-Zn催化剂对电催化水蒸气重整生物油制氢的研究[D].合肥:中国科学技术大学, 2010. (LIN Shao-bing. Research on the hydrogen production from Bio-oil by electrochemical catalytic steam reforming using Ni-Cu-Zn-nano SiO2[D]. Hefei:University of Science and Technology of China, 2010.)

    16. [16]

      [16] MORAES T, NETO R, RIBEIRO M, MATTOS L, KOURTELESIS M, LADAS S, VERYKIOS X, NORONHA F. The study of the performance of PtNi/CeO2-nanocube catalysts for low temperature steam reforming of ethanol[J]. Catal Today, 2015, 242:35-49.

    17. [17]

      [17] BUSSI J, BESPALKO N, VEIGA S, AMAYA A, FACCIO R, ABELLO M. The preparation and properties of Ni-La-Zr catalysts for the steam reforming of ethanol[J]. Catal Commun, 2008, 10(1):33-38.

    18. [18]

      [18] GALLEGOS-SUAREZ E, GUERRERO-RUI Z, FERNANDEZ-GARCIA M, RODRIGUEZ-RAMOS I, KUBACKA A. Efficient and stable Ni-Ce glycerol reforming catalysts:Chemical imaging using X-ray electron and scanning transmission microscopy[J]. Appl Catal B:Environ, 2015, 165:139-148.

    19. [19]

      [19] NOGUEIRA F, ASSAF P, CARVALHO H, ASSAF E. Catalytic steam reforming of acetic acid as a model compound of bio-oil[J]. Appl Catal B:Environ, 2014, 160(7):188-199.

    20. [20]

      [20] HE Z, YANG M, WANG X, ZHAO Z, DUAN A. Effect of the transition metal oxide supports on hydrogen production from bio-ethanol reforming[J]. Catal Today, 2012, 194(1):2-8.

    21. [21]

      [21] SCOTT M, GOEFFROY M, CHIU W, BLACKFORD M, IDRISS H. Hydrogen production from ethanol over Rh-Pd/CeO2 catalysts[J]. Top Catal, 2008, 51(1/4):13-21.

    22. [22]

      [22] CHIOU J, WANG C, YANG S, BI J, SHEN C, WANG C. Reforming of ethanol to produce hydrogen over PtRuMg/ZrO2 catalyst[J]. J Nanosci Nanotechnol, 2012, 2012:1-6.

    23. [23]

      [23] XIAO R, ZHANG S, PENG S, SHEN D, LIU K. Use of heavy fraction of bio-oil as fuel for hydrogen production in iron-based chemical looping process[J]. Int J Hydrogen Energy, 2014, 39:19955-19969.

    24. [24]

      [24] LIU S, CHEN M, LEI C, YANG Z, ZHU C, WANG J, CHEN M. Catalytic steam reforming of bio-oil aqueous fraction for hydrogen production over Ni-Mo supported on modified sepiolite catalysts[J]. Int J Hydrogen Energy, 2013, 38(10):3948-3955.

    25. [25]

      [25] 陈天虎,彭书传,黄川徽,史晓莉,冯有亮.从苏皖凹凸棒石粘土制备纯凹凸棒石[J].硅酸盐学报, 2004, 32(8):965-969. (CHEN Tian-hu, PENG Shu-zhuan, HUANG Chuan-wei, SHI Xiao-li, FENG You-liang. Preparation of pure palygorskite from palygorskite claysin JiangSu and AnHui[J]. J Chin Ceram Soc, 2004, 32(8):965-969.)

    26. [26]

      [26] CHEN T, XU H, LU A, XU X, PENG S, YUE S. Direct evidence of transformation from smectite to palygorskite:TEM investigation[J]. Sci China, 2004, 47(11):985-994.

    27. [27]

      [27] WANG L, KOIKE M, KOSO S. Catalytic performance and characterization of Ni-Fe catalysts for the steam reforming of tar from biomass pyrolysis[J]. Proc Jpi, 2010:120.

    28. [28]

      [28] HOU T, ZHANG S, CHEN Y, WANG D, CAI W. Hydrogen production from ethanol reforming:Catalysts and reaction mechanism[J]. Renew Sust Energy Rev, 2015, 44:132-148.

    29. [29]

      [29] ABELLO S, BOLSHAK E, MONTANE D. Ni-Fe catalysts derived from hydrotalcite-like precursors for hydrogen production by ethanol steam reforming[J]. Appl Catal A:Gen, 2013, 450(2):261-274.

    30. [30]

      [30] LAOSIRIPOJANA N, SUTTHISRIPOK W, CHAROJROCHKUL S, ASSABUMRUNGRAT S. Development of Ni-Fe bimetallic based catalysts for biomass tar cracking/reforming:Effects of catalyst support and co-fed reactants on tar conversion characteristics[J]. Fuel Process Technol, 2014, 127(11):26-32.

    31. [31]

      [31] FU P, YI W, LI Z, BAI X, ZHANG A, LI Y, LI Z. Investigation on hydrogen production by catalytic steam reforming of maize stalk fast pyrolysis bio-oil[J]. Int J Hydrogen Energy, 2014, 39(26):13962-13971.

    32. [32]

      [32] DOMINE M, IOJOIU E, DAVIDIAN T, GUILHAUME, MIRODATOS C. Hydrogen production from biomass-derived oil over monolithic Pt-and Rh-based catalysts using steam reforming and sequential cracking processes[J]. Catal Today, 2008, 133(2):565-573.

    33. [33]

      [33] IWASA N, YAMANE T, ARAI M. Influence of alkali metal modification and reaction conditions on the catalytic activity and stability of Ni containing smectite-type material for steam reforming of acetic acid[J]. Int J Hydrogen Energy, 2011, 36(10):5904-5911.

    34. [34]

      [34] WANG S, FAN Z, CAI Q, LI X, ZHU L, WANG Q, LUO Z. Catalytic steam reforming of bio-oil model compounds for hydrogen production over coal ash supported Ni catalyst[J]. Int J Hydrogen Energy, 2014, 39(5):2018-2025.

  • 加载中
    1. [1]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    2. [2]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    3. [3]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    4. [4]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    5. [5]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    6. [6]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    7. [7]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    8. [8]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    9. [9]

      Yongmei Liu Lisen Sun Yongmei Hao Zhanxiang Liu Shuyong Zhang . Innovative Design of Chemistry Experiment Courses with Ideological and Political Education: A Case Study of Catalytic Hydrogen Production Experiments. University Chemistry, 2025, 40(5): 224-229. doi: 10.12461/PKU.DXHX202412144

    10. [10]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    11. [11]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    12. [12]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    13. [13]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    14. [14]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    15. [15]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    16. [16]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    17. [17]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    18. [18]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    19. [19]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    20. [20]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

Metrics
  • PDF Downloads(0)
  • Abstract views(345)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return