Citation: DONG Hui-huan, GUO Xing-cui, QIN Zhang-feng, HAN Sheng, MU Xin-dong. Effect of modified groups of carbon nanotubes on catalytic properties of Ru/CNTs catalysts for hydrogenolysis of sorbitol[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(12): 1454-1460. shu

Effect of modified groups of carbon nanotubes on catalytic properties of Ru/CNTs catalysts for hydrogenolysis of sorbitol

  • Corresponding author: HAN Sheng,  MU Xin-dong, 
  • Received Date: 9 June 2015
    Available Online: 14 September 2015

    Fund Project: 国家自然科学基金(21406251,21201174) (21406251,21201174)煤转化国家重点实验室开放课题(J13-14-603)资助 (J13-14-603)

  • Ruthenium catalysts supported on carbon nanotubes with different functional groups (MCN, AMCN and GMCN) were prepared by incipient wetness impregnation with ultrasonic-assistance and used for the hydrogenolysis of sorbitol. The catalysts were characterized by X-ray diffraction (XRD), HRTEM, X-ray photoelectron spectroscopy (XPS) and ICP-AES. The effects of functional group species, and base additives on the catalytic performance of Ru/CNTs in the sorbitol hydrogenolysis reaction were investigated. Nearly 99.5% of sorbitol conversion and 47.7% total yield of ethylene glycol and 1,2-propanediol (1,2-PD) could be achieved over Ru/AMCN under mild reaction conditions (205℃, 5.0 MPa), using Ca(OH)2 as additive. The conversion of sorbitol and the selectivity to ethylene glycol (EG) and 1,2-propanediol (1,2-PD) did not decrease over the five repeated runs, which confirmed that the Ru/AMCN catalyst exhibited high stability in the aqueous hydrogenolysis of sorbitol to glycols.
  • 加载中
    1. [1]

      [1] LIU Y, LUO C, LIU H. Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst[J]. Angew Chem, 2012, 124(13):3303-3307.

    2. [2]

      [2] PEEREBOOM L, JACKSON J E, MILLER D J. Interaction of polyols with ruthenium metal surfaces in aqueous solution[J]. Green Chem, 2009, 11:1979-1986.

    3. [3]

      [3] MARIS E P, DAVIS R J. Hydrogenolysis of glycerol over carbon-supported Ru and Pt catalysts[J]. J Catal, 2007, 249(2):328-333.

    4. [4]

      [4] YUE H, ZHAO Y, MA X. Ethylene glycol:Properties, synthesis, and applications[J]. Chem Soc Rev, 2012, 41(11):4218-4244.

    5. [5]

      [5] ZARTMAN W H, ADKINS H. Hydrogenolysis of sugars[J]. J Am Chem Soc, 1933, 55(11):4559-4563.

    6. [6]

      [6] CLARK I T. Hydrogenolysis of sorbitol[J]. Ind Eng Chem, 1958, 50:1125-1126.

    7. [7]

      [7] POLETAEVA T I, IPATOVA T V, LEIKIN E R, MAMAEVA I A, EPISHKO G F, GOLOSMAN E Z, YAKERSON V I. Hydrogenolysis of glucose on Ni-Al2O3 and Ni-Cu-Al2O3 catalysts[J]. Rull Acad Sci VSSR, Div Chem Sci, 1976, 25(11):2412-2415.

    8. [8]

      [8] SUN J, LIU H. Selective hydrogenolysis of biomass-derived xylitol to ethylene glycol and propylene glycol on supported Ru catalysts[J]. Green Chem, 2011, 13:135-142.

    9. [9]

      [9] ZHAO L, ZHOU J H, SUI Z J, ZHOU X G. Hydrogenolysis of sorbitol to glycols over carbon nanofiber supported ruthenium catalyst[J]. Chem Eng Sci, 2010, 65:30-35.

    10. [10]

      [10] PAN X L, BAO X H. Reactions over catalysts confined in carbon nanotubes[J]. Chem Commun, 2009, 47(47):6271-6281.

    11. [11]

      [11] SERP P, CASTILLEJOS E. Catalysis in carbon nanotubes[J]. Chemcatchem, 2010, 2:41-47.

    12. [12]

      [12] SU D S, PERATHONER S, CENTI G. Nanocarbons for the development of advanced catalysts[J]. Chem Rev, 2013, 113(8):5782-5816.

    13. [13]

      [13] KARIMI A, NASERNEJAD B, RASHIDI A M, TAVASOLI A, POURKHALIL M. Functional group effect on carbon nanotube (CNT)-supported cobalt catalysts in Fischer-Tropsch synthesis activity, selectivity and stability[J]. Fuel, 2014, 117:1045-1051.

    14. [14]

      [14] LEPRO X, TERRES E, TERRONES M. Efficient anchorage of Pt clusters on N-doped carbon nanotubes and their catalytic activity[J]. Chem Phys Lett, 2008, 463(1/3):124-129.

    15. [15]

      [15] SHIDING M, ZHIMIN L, BUXING H, JUN H, ZHENYU S, JIANLING Z. Ru nanoparticles immobilized on montmorillonite by ionic liquids:A highly efficient heterogeneous catalyst for the hydrogenation of benzene[J]. Angew Chem Int Ed, 2005, 45(2):266-269.

    16. [16]

      [16] MAURIELLO F, ARIGA H, MUSOLINO M G, PIETROPAOLO R, TAKAKUSAGI S, ASAKURA K. Exploring the catalytic properties of supported palladium catalysts in the transfer hydrogenolysis of glycerol[J]. Appl Catal B:Environ, 2015, 166-167:121-131.

    17. [17]

      [17] 卢振明,赵东林,刘云芳,沈曾民.石墨化处理对碳纳米管结构的影响[J].材料热处理学报, 2005, 26(6):9-11. (LU Zhen-ming, ZHAO Dong-lin, LIU Yun-fang, SHEN Zeng-min. Effect of graphitization on the structure of carbon nanobubes[J]. Trans Mater Heat Treat, 2005, 26(6):9-11.)

    18. [18]

      [18] 周静红,刘国才,隋志写,周兴贵,袁滑康.碱促进剂在Ru/CNFs催化梨醇氢解制备二元醇中的应用[J].催化学报, 2014, 35(5):692-702. (ZHOU Jing-hong, LIU Guo-cai, SUI Zhi-xie, ZHOU Xing-gui, YUAN Hua-kang. Hydrogenolysis of sorbitol to glycols over carbon nanofibers-supported ruthenium catalyst:The role of base promoter[J]. Chin J Catal, 2014, 35(5):692-702.)

    19. [19]

      [19] SOHOUNLOUE D K, MONTASSIER C, BARBIER J. Catalytic hydrogenolysis of sorbitol[J]. React Kinet Catal L, 1983, 22:391-397.

    20. [20]

      [20] ANDREWS M A, KLAEREN S A. Selective hydrocracking of monosaccharide carbon-carbon single bonds under mild conditions-ruthenium hydride catalyzed formation of glycols[J]. J Am Chem Soc, 1989, 111:4131-4133.

    21. [21]

      [21] SCHLAF M, GHOSH P, FAGAN P J, HAUPTMAN E, BULLOCK R M. Metal-catalyzed selective deoxygenation of diols to alcohols[J]. Angew Chem Int Ed, 2001, 40:3887-3890.

    22. [22]

      [22] KUO Y J, COCCO R A, TATARCHUK B J. Hydrogenation and hydrodesulfurization over sulfided ruthenium catalysts:ii. Impact of surface phase behavior on activity and selectivity[J]. J Catal, 1988, 112:250-266.

    23. [23]

      [23] LI N, HUBER G W. Aqueous-phase hydrodeoxygenation of sorbitol with Pt/SiO2-Al2O3:Identification of reaction intermediates[J]. J Catal, 2010, 270:48-59.

  • 加载中
    1. [1]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    2. [2]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    3. [3]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    4. [4]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    5. [5]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    6. [6]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    7. [7]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    8. [8]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    9. [9]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    10. [10]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    11. [11]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    12. [12]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    13. [13]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    14. [14]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    15. [15]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    16. [16]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    17. [17]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    18. [18]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    19. [19]

      Yunli XuXuwen DaLei WangYatong PengWanpeng ZhouXiulian LiuYao WuWentao WangXuesong WangQianxiong Zhou . Ru(Ⅱ)-based aggregation-induced emission (AIE) agents with efficient 1O2 generation, photo-catalytic NADH oxidation and anticancer activity. Chinese Chemical Letters, 2025, 36(5): 110168-. doi: 10.1016/j.cclet.2024.110168

    20. [20]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

Metrics
  • PDF Downloads(0)
  • Abstract views(529)
  • HTML views(56)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return