Citation: XIAO Zhu-qian, GE Qiu-wei, XING Chuang, FANG Sheng, JI Jian-bing, MAO Jian-wei. One-pot catalytic agroforestry waste cellulose to polyols over self-reducing bifunctional catalysts[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(12): 1446-1453. shu

One-pot catalytic agroforestry waste cellulose to polyols over self-reducing bifunctional catalysts

  • Corresponding author: MAO Jian-wei, 
  • Received Date: 14 September 2015
    Available Online: 29 October 2015

    Fund Project: 浙江省教育厅科研项目(Y20112088) (Y20112088)浙江省科技计划项目(2011R09028-10)资助 (2011R09028-10)

  • A series of self-reducing bifunctional catalysts Ni-W/SBA-15 were prepared through reduction of metal oxides by reducing gas produced in the calcination process of bio-carbon source. These catalysts were directly applied to the hydrogenolysis agroforestry waste lignocellulose to low carbon polyols. TG and XRD results showed that when added 3.0 g sucrose into catalysts precursors, reduction of active metal oxides was supreme and Ni particles increased gradually as the further increase of Ni. The tungsten species were amporphous state seen from XRD patterns. The micrographs from SEM showed that the nickel and tungsten species were loaded on SBA-15 surface with a good dispersion and the particles were tiny which was beneficial to promote the reaction. Thus, the transformation of microcellulose was complete and low carbon polyols yield was up to 68.14%. In contrast, the target product yield was 52.66% when the wheat straw as the substrate under the reaction condition of 240℃ and 6.0 MPa H2 for 6 h.
  • 加载中
    1. [1]

      [1] HUBER G W, CHHEDA J N, BARRETT C J, DUMESIC J A. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates[J]. Science, 2006, 308(5727):1446-1449.

    2. [2]

      [2] SU J Y, BAEK I G, PARK E D. Hydrogenolysis of cellulose into polyols over Ni/W/SiO2 catalysts[J]. Appl Catal A:Gen, 2013, 466(8):161-168.

    3. [3]

      [3] LONG J X, GUO B, LI X H, JIANG Y B, WANG F R, TSANG S D, WANG L F, YU K M. One step catalytic conversion of cellulose to sustainable chemcials utilizing cooperative ionic liquid pairs[J]. Green Chem, 2011, 13(9):2334-2338.

    4. [4]

      [4] ZHOU C H, XIA X, LIN C X, TONG D S, JORGE B. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels[J]. Chem Soc Rev, 2011, 40(11):5588-5617.

    5. [5]

      [5] 周立坤,庞纪峰,王爱琴,张涛.组合催化器WO3+Raney Ni上高效转化菊芋秙秆制乙二醇[J].催化学报, 2013, 34(11):2041-2046. (ZHOU Li-kun, PANG Ji-feng, WANG Ai-qin, ZHANG Tao. Catalytic conversion of Jerusalem artichoke stalk to ethylene glycol over a combined catalyst of WO3 and Raney Ni[J]. Chin J Catal, 2013, 34(11):2041-2046.)

    6. [6]

      [6] DEUTSCH K L, SHANKS B H. Hydrodeoxygenation of lignin model compunds over a copper chromite catalyst[J]. Appl Catal A:Gen, 2012, 447-448(24):144-150.

    7. [7]

      [7] MAHMOOD N, YUAN Z S, SCHMIDIT J, XU C B. Hydrolytic depolymerization of hydrolysis lignin:Effects of catalysts and solvents[J]. Bioresour Technol, 2015, 190:416-419.

    8. [8]

      [8] KIM H Y, JEONG H S, LEE S Y, CHOI J W, CHOI I G. Pd-catalyst assisted oganosolv pretreatment to isolate ethanol organosolv lignin retaining compatible characteristics for producing phenolic monomer[J]. Fuel, 2015, 153:40-47.

    9. [9]

      [9] FUKUOKA A, DHEPE P L. Catalytic conversion of cellulose into sugar alcohols[J]. Angew Chem Int Ed, 2006, 118(31):5285-5287.

    10. [10]

      [10] WANG S R, RU B, DAI G X, SUN W X, QIU K Z, ZHOU J S. Pyrolysis mechanism study of minimally damaged hemicellulose polymers isolated from agricultural waste straw samples[J]. Bioresour Technol, 2015, 190:211-218.

    11. [11]

      [11] TAI Z J, ZHANG J Y, WANG A Q, PANG J F, ZHENG M Y, ZHANG T. Catalytic conversion of cellulose to ethylene glycol over a low cost binary catalyst of Raney Ni and tungstic acid[J].ChemSusChem, 2013, 6:652-658.

    12. [12]

      [12] SUN Y G, MA Y L, WANG Z, YAO J K. Evaluating and optimizing pretreatment technique for catalytic hydrogenolysis conversion of corn stalk into polyol[J]. Bioresour Technol, 2014, 158(4):307-312.

    13. [13]

      [13] WANG A Q, ZHANG T. One-pot conversion of cellulose to ethylene glucol with multifunctional tungsten-based catalysts[J]. Acc Chem Res, 2013, 46(7):1377-1386.

    14. [14]

      [14] KATARÍNA F, OLIVER M, MARTIN L, PETER C. Hydrogenolysis of cellulose to valuable chemicals over actived carbon supported mono-and bimetallic nickel/tungsten catalysts[J]. Green Chem, 2014, 16(7):3580-3588.

    15. [15]

      [15] LIU Q Y, LIAO Y H, WANG T J, CAI C L, ZHANG Q, TSUBAKI N, MA L L. One-pot transformation of cellulose to sugar alcohols over acidic metal phosphates combined with Ru/C[J]. Ind Eng Chem Res, 2014, 53(32):12655-12644.

    16. [16]

      [16] LEO I M, GRANADOS M L, FIERRO L L G, MARISCAL Rl. Sorbitol hydrogenolysis to glycols by supported ruthenium catalysts[J]. Chin J Catal, 2014, 35:614-621.

    17. [17]

      [17] LIU Y, LUO C, LIU H C. Tungsten trioxide promoted selective conversion of cellulose into Propylene glycol on a ruthenium catalyst[J]. Angew Chem Int Ed, 2012, 51(13):3303-3307.

    18. [18]

      [18] 曹月领,王军威,李其峰,殷宁,刘振民,亢茂青,朱玉雷. Ni-WO3/SBA-15催化剂上纤维素的水解和加氢[J].燃料化学学报, 2013, 41(8):943-949. (CAO Yue-ling, WANG Jun-wei, LI Qi-feng, YIN Ning, LIU Zheng-min, KANG Mao-qing, ZHU Yu-lei.Hydrolytic hydrogenation of cellulose over Ni-WO3/SBA-15 catalysts[J]. J Fuel Chem Technol, 2013, 41(8):943-949.)

    19. [19]

      [19] 李传友,郝东生,杨立国,熊波,郭建业,张莉,高娇.水稻小麦秸秆成分近红外光谱快速分析研究[J].中国农学通报, 2014, 30(20):133-140. (LI Chuan-you, HAO Dong-sheng, YANG Guo-li, XIONG Bo, GUO Jian-ye, ZHANG Li, GAO Jiao. Rapid analysis of rice and wheat straw components by near-infrared spectroscopy[J]. Chin Agri Sci Bulletin, 2014, 30(20):133-140.)

    20. [20]

      [20] KAMM B, GRUNER P R, KAMM M. Biorefineries-Industrial Process and Products:Status and Futrue Directions (Volume 2)[M]. Germany:WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006.

    21. [21]

      [21] 王金主,王元秀,李峰,高艳华,徐军庆,袁建国.玉米秸秆中纤维素、半纤维素和木质素的测定[J].山东食品发酵, 2010, 3:44-47. (WANG Jin-zhu, WANG Yuan-xiu, LI Feng, GAO Yan-hua, XU Jun-qing, YUAN Jian-guo. Determination of cellulose, hemicellulose and lignin in corn stalk[J]. Shangdong Food Forment, 2010, 3:44-47.)

    22. [22]

      [22] 赵蒙蒙,姜曼,周祚万.几种农作物秸秆的成分分析[J].材料导报, 2011, 6(25):122-125. (ZHAO Meng-meng, JIANG Man, ZHOU Zuo-wan. The components analysis of several kinds of agricultural Residues[J]. Materials Review, 2011, 6(25):122-125.)

    23. [23]

      [23] 方楷,陈尚钘,杨光耀,于芬,王宗德,杨清培,施建敏,陈伏生.厚壁毛竹结构性成分含量特征[J].江西农业大学学报, 2014, 36(5):929-933. (FANG Kai, CHEN Shang-yan, YANG Guang-yao, YU Fen, WANG Zong-de, YANG Qing-pei, SHI Jian-min, CHEN Fu-shen. The features of structural composition of phyllostachys edulis 'Pachyloen'[J]. Acta Agric Univ JiangXiensis, 2014, 36(5):929-933.)

    24. [24]

      [24] KOBAYASHI H, KOMANOYA T, GUHA S K, HARA K, FUKUOKA A. Conversion of cellulose into renewable chemicals by supported metal catalysis[J]. Appl Catal A:Gen, 2011, 409-410(23):13-20.

  • 加载中
    1. [1]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    2. [2]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    3. [3]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    4. [4]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    5. [5]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    6. [6]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    7. [7]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    8. [8]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    9. [9]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    10. [10]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    11. [11]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    12. [12]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    13. [13]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    14. [14]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    15. [15]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    16. [16]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    19. [19]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    20. [20]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

Metrics
  • PDF Downloads(0)
  • Abstract views(530)
  • HTML views(65)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return