Citation: LEI Ming, HUANG Xing-zhi, WANG Chun-bo. Effect of CO2 and H2O gasification on the combustion characteristics of coal and char under O2/CO2atmosphere[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(12): 1420-1426. shu

Effect of CO2 and H2O gasification on the combustion characteristics of coal and char under O2/CO2atmosphere

  • Corresponding author: LEI Ming, 
  • Received Date: 20 August 2015
    Available Online: 29 September 2015

    Fund Project: 国家自然科学基金(51276064) (51276064)中央高校基本科研业务费专项资金(2014QN41)项目资助 (2014QN41)

  • The burning behaviors of Datong coal and char under O2/N2, O2/CO2 and O2/H2O/CO2 atmosphere were comparatively investigated by thermogravimetric analyzer. The influence of CO2 and H2O gasification on the oxy-fuel combustion characteristics of coal and char were mainly studied. The results indicate that at 5% oxygen concentration the burning rate of pulverized coal in each atmosphere decreases in the order of O2/N2, O2/CO2 and O2/H2O/CO2. When the oxygen concentration reduces to 2%, owing to the CO2 and H2O gasification, the overall reaction rate of pulverized coal increases in the same order at high temperatures. The burning rate of char is slower in O2/CO2 than that in O2/N2 at 5% oxygen concentration, but as the burning process is delayed, the overall reaction rate of char in O2/H2O/CO2 rises significantly due to the action of gasification. At 2% oxygen concentration, the overall reaction rate of char in O2/CO2 is higher than the burning rate of char in O2/N2 with the rise in temperature. The overall reaction rate of char in O2/H2O/CO2 further increases because the H2O gasification plays a major role in CO2 and H2O co-gasification. The kinetic analysis shows that at 5% oxygen concentration the apparent activation energy in the atmosphere increases in the order of O2/N2, O2/CO2 and O2/H2O/CO2. However, the apparent activation energy of different atmospheres declines with the decrease of oxygen concentration.
  • 加载中
    1. [1]

      [1] CHEN L, YONG Z S, GHONIEMA F. Oxy-fuel combustion of pulverized coal:Characterization, fundamentals, stabilization and CFD modeling[J]. Prog Energy Combust Sci, 2012, 38(2):156-214.

    2. [2]

      [2] HECHTE S, SHADDIXC R, GEIER M, MOLINA A, HAYNESB S. Effect of CO2 and steam gasification reactions on the oxy-combustion of pulverized coal char[J]. Combust Flame, 2012, 159(11):3437-3447.

    3. [3]

      [3] GEIER M, SHADDIX C R, DAVIS K A, SHIM H S. On the use of single-film models to describe the oxy-fuel combustion of pulverized coal char[J]. Appl Energy, 2012, 93:675-679.

    4. [4]

      [4] GHAREBAGHIA M, IRONSB R M, POURKASHANIANA M, WILLIAMS A. An investigation into a carbon burnout kinetic model for oxy-coal combustion[J]. Fuel Process Technol, 2011, 92(12):2455-2464.

    5. [5]

      [5] 王春波,李超,雷鸣.水蒸气对煤焦恒温下燃烧特性的影响[J].中国电机工程学报, 2013, 33(32):8-13. (WANG Chun-bo, LI Chao, LEI Ming. Effects of water vapor on the isothermal combustion characteristics of coal char[J]. Pro CSEE, 2013, 33(32):8-13.)

    6. [6]

      [6] 王长安,刘银河,车得福.低氧浓度下煤燃烧特性的热重实验研究[J].工程热物理学报, 2010, 31(10):1785-1788. (WANG Chang-an, LIU Yin-he, CHE De-fu. Experimental investigation on combustion characteristics of coals in low oxygen concentration with thermogravimetry[J]. J Eng Thermophys, 2010, 31(10):1785-1788.)

    7. [7]

      [7] KIM D, CHOI S, SHADDIX C R, GEIER M. Effect of CO2 gasification reaction on char particle combustion in oxy-fuel conditions[J]. Fuel, 2014, 120:130-140.

    8. [8]

      [8] YIB J, ZHANGL Q, HUANGF, MAOZ H, ZHENGC G. Effect of H2O on the combustion characteristics of pulverized coal in O2/CO2 atmosphere[J]. Appl Energy, 2014, 132:349-357.

    9. [9]

      [9] RIAZA J, ALVAREZ L, GIL M V, PEVIDA C, PIS J J, RUBIERA F. Effect of oxy-fuel combustion with steam addition on coal ignition and burnout in an entrained flow reactor[J]. Energy, 2011, 36(8):5314-5319.

    10. [10]

      [10] GONZALO-TIRADO C, JIMENEZ S, BALLESTER J. Gasification of a pulverized sub-bituminous coal in CO2 at atmospheric pressure in an entrained flow reactor[J]. Combust Flame, 2012, 159(1):385-395.

    11. [11]

      [11] GONZALO-TIRADO C, JIMENEZ S, BALLESTER J. Kinetics of CO2 gasification for coals of different ranks under oxy-combustion conditions[J]. Combust Flame, 2013, 160(2):411-416.

    12. [12]

      [12] BAIY H, WANGY L, ZHUS H, YANL J, LI F, XIEK C. Synergistic effect between CO2 and H2O on reactivity during coal chars gasification[J]. Fuel, 2014, 126:1-7.

    13. [13]

      [13] ZOU C, ZHANG L, CAOS Y, ZHENG C G. A study of combustion characteristics of pulverized coal in O2/H2O atmosphere[J]. Fuel, 2014, 115:312-320.

    14. [14]

      [14] 雷鸣,王春波,阎维平,王松岭.大同烟煤增压富氧燃烧的热重实验研究[J].中国电机工程学报, 2012, 32(5):21-26. (LEI Ming, WANG Chun-bo, YAN Wei-ping, WANG Song-ling. Thermogravimetric research on pressurized oxy-fuel combustion of Datong bituminous coal[J]. Pro CSEE, 2012, 32(5):21-26.)

    15. [15]

      [15] 刘国伟,董芃,韩亚芬,别如山.富氧条件下煤燃烧特性的热重分析实验研究[J].哈尔滨工业大学学报, 2011, 43(1):104-108. (LIU Guo-wei, DONG Peng, HAN Ya-fen, BIE Ru-shan. Experimental study on combustion characteristics of coals under enriched-oxygen condition by thermo-gravimetric analysis[J]. J Harbin Inst Technol, 2011, 43(1):104-108.)

    16. [16]

      [16] 韩亚芬.富氧条件下煤燃烧特性的热重法实验研究[D].哈尔滨:哈尔滨工业大学, 2007. (HAN Ya-fen. Study on combustion characteristics of coal at oxygen enriched condition by thermogravimetric[D]. Harbin:Harbin Institute of Technology, 2007.)

  • 加载中
    1. [1]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    2. [2]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    3. [3]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    4. [4]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    5. [5]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    6. [6]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    9. [9]

      Huirong Chen Yingzhi He Yan Han Jianbo Hu Jiantang Li Yunjia Jiang Basem Keshta Lingyao Wang Yuanbin Zhang . A new SIFSIX anion pillared cage MOF with crs topological structure for efficient C2H2/CO2 separation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100508-100508. doi: 10.1016/j.cjsc.2024.100508

    10. [10]

      Shuyong Zhang Yaxian Zhu Wenqing Zhang Yuzhi Wang Jing Lu . Ideological and Political Design of Combustion Heat Measurement Experiment: Determination of Heat Value of Agricultural and Forestry Wastes. University Chemistry, 2024, 39(2): 1-6. doi: 10.3866/PKU.DXHX202303026

    11. [11]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    12. [12]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    13. [13]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    14. [14]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    15. [15]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    16. [16]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    17. [17]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    18. [18]

      Fahui XiangLu LiZhen YuanWuji WeiXiaoqing ZhengShimin ChenYisi YangLiangji ChenZizhu YaoJianwei FuZhangjing ZhangShengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672

    19. [19]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    20. [20]

      Yang LiYanan DongZhihong WeiChangzeng YanZhen LiLin HeYuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206

Metrics
  • PDF Downloads(0)
  • Abstract views(513)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return