Citation: LIU Lei, JIN Jing, LIN Yu-yu, HOU Feng-xiao. Effect of calcium on the absorption of NO on char surface:A density functional theory study[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(12): 1414-1419. shu

Effect of calcium on the absorption of NO on char surface:A density functional theory study

  • Corresponding author: JIN Jing, 
  • Received Date: 23 June 2015
    Available Online: 21 August 2015

    Fund Project: 国家科技支撑计划(2015BAA04B03) (2015BAA04B03)上海市科委基础研究重点项目(14JC1404800)资助 (14JC1404800)

  • The effect of calcium on the adsorption of NO on char surface was studied by using density functional theory. Periodic boundary graphene model was adopted to simulate the graphitic structure of char surface; the catalytic effect of calcium on NO adsorption was investigated by decorating the graphene surface with calcium atoms which have a coverage rate of 13.3%. The results demonstrated that NO is physically adsorbed on the pristine graphene surface, with a binding energy of -19.34 kJ/mol; after decorating the graphene surface with calcium atoms, the adsorption is turned into a chemical sorption with a binding energy of -206.02 kJ/mol, due to the transfer of electrons in 4s and 3d orbitals of Ca atom to the NO molecule.
  • 加载中
    1. [1]

      [1] LUAN T, WANG X, HAO Y, CHENG L. Control of NO emission during coal reburning[J]. Appl Energy, 2009, 86(9):1783-1787.

    2. [2]

      [2] 刘彦,齐学义,丁宁,罗丹,陈方,徐江荣,周俊虎,岑可法.煤粉再燃过程中NO均相与异相还原反应相对贡献的研究[J].动力工程, 2009, 29(10):946-949+955. (LIU Yan, QI Xue-yi, DING Ning, LUO Dan, CHEN Fang, XU Jiang-rong, ZHOU Jun-huo, CEN Kefa. Study on relative contributions of homogenous and heterogeneous reaction during no reduction in pulverized coal reburning[J]. J Power Eng, 2009, 29(10):946-949+955.)

    3. [3]

      [3] CHAMBRION P, SUZUKI T, ZHANG Z-G, KYOTANI T, TOMITA A. XPS of nitrogen-containing functional groups formed during the C-NO reaction[J]. Energy Fuels, 1997, 11(3):681-685.

    4. [4]

      [4] CHAMBRION P, KYOTANI T, TOMITA A. Role of N-containing surface species on NO reduction by carbon[J]. Energy Fuels, 1998, 12(2):416-421.

    5. [5]

      [5] YAMASHITA H, TOMITA A, YAMADA H, KYOTANI T, RADOVIC LR. Influence of char surface chemistry on the reduction of nitric oxide with chars[J]. Energy Fuels, 1993, 7(1):85-89.

    6. [6]

      [6] ILLAN-GOMEZ M J, LINARES-SOLANO A, RADOVIC L R, SALINAS-MARTINEZ D E, LECEA C. NO reduction by activated carbons 4. Catalysis by calcium[J]. Energy Fuels, 1995, 9(1):112-118.

    7. [7]

      [7] KYOTANI T, TOMITA A. Analysis of the reaction of carbon with NO/N2O using ab initio molecular orbital theory[J]. J Phys Chem B, 1999, 103(17):3434-3441.

    8. [8]

      [8] ZHANG H, JIANG X, LIU J, SHEN J. New Insights into the Heterogeneous reduction reaction between NO and char-bound nitrogen[J]. Ind Eng Chem Res, 2014, 53(15):6307-6315.

    9. [9]

      [9] ZHANG X, ZHOU Z, ZHOU J, LIU J, CEN K. Density functional study of NO desorption from oxidation of nitrogen containing char by O2[J]. Combust Sci Technol, 2012, 184(4):445-455.

    10. [10]

      [10] ZHOU Z, ZHANG X, ZHOU J, LIU J, CEN K. A molecular modeling study of N2 desorption from NO heterogeneous reduction on char[J]. Energy Source Part A, 2013, 36(2):158-166.

    11. [11]

      [11] MONTOYA A, MONDRAGON F, TRUONG T N. Kinetics of nitric oxide desorption from carbonaceous surfaces[J]. Fuel Process Technol, 2002, 77:453-458.

    12. [12]

      [12] 张秀霞,周志军,周俊虎,姜树栋,刘建忠,岑可法. N2O在焦炭表面异相生成和分解机理的密度泛函理论研究[J].燃料化学学报, 2011, 39(11):806-811. (ZHANG Xiu-xia, ZHOU Zhi-jun, ZHOU Jun-huo, JIANG Chu-dong, LIU Jian-zhong, CEN Ke-fa. A study of functional study of heterogeneous formation and decomposition of N2O on the surface of char[J]. J Fuel Chem Technol, 2011, 39(11):806-811.)

    13. [13]

      [13] 温正城,王智化,周俊虎,周志军,刘建忠,岑可法.金属钙对煤焦异相还原NO催化机理的量子化学研究[J].燃烧科学与技术, 2009, 15(6):505-510. (WEN Zheng-cheng, WANG Zhi-hua, ZHOU Jun-hu, ZHOU Zhi-jun, LIU Jian-zhong, CEN Ke-fa. Quantum chemistry study on catalytic mechanism of Ca on NO-char heterogeneous reaction[J]. J Combust Sci Technol, 2009, 15(6):505-510.)

    14. [14]

      [14] SENDT K, HAYNES B S. Density functional study of the chemisorption of O2 across two rings of the armchair surface of graphite[J]. J Phys Chem C, 2007, 111(14):5465-5473.

    15. [15]

      [15] SENDT K, HAYNES B S. Density functional study of the reaction of O2 with a single site on the zigzag edge of graphene[J]. Proc Combust Inst, 2011, 33(2):1851-1858.

    16. [16]

      [16] DENIS P A, IRIBARNE F. Theoretical investigation on the interaction between beryllium, magnesium and calcium with benzene, coronene, cirumcoronene and graphene[J]. Chem Phys, 2014, 430:1-6.

    17. [17]

      [17] OUBAL M, PICAUD S, RAYEZ M T, RAYEZ J C. Water adsorption on oxidized single atomic vacancies present at the surface of small carbonaceous nanoparticles modeling soot[J]. Chemphyschem, 2010, 11(18):4088-4096.

    18. [18]

      [18] GARCIA-FERNANDEZ C, PICAUD S, RAYEZ M T, RAYEZ J C, RUBAYO-SONEIRA J. First-principles study of the interaction between NO and large carbonaceous clusters modeling the soot surface[J]. J Phys Chem A, 2014, 118(8):1443-1450.

    19. [19]

      [19] AO Z, DOU S, XU Z, JIANG Q, WANG G. Hydrogen storage in porous graphene with Al decoration[J]. Int J Hydrogen Energy, 2014, 39(28):16244-16251.

    20. [20]

      [20] LIU W, LIU Y, WANG R. Prediction of hydrogen storage on Y-decorated graphene:A density functional theory study[J]. Appl Surf Sci, 2014, 296:204-208.

    21. [21]

      [21] NACHIMUTHU S, LAI P J, JIANG J C. Efficient hydrogen storage in boron doped graphene decorated by transition metals-A first-principles study[J]. Carbon, 2014, 73:132-140.

    22. [22]

      [22] QIU P, HUANG H, ZHANG J, LIU L, CHEN Y. Catalytic effects of main metals in coal ash on advanced reburning of pulverized coal[J]. Energy Fuels, 2010, 24:4919-4924.

    23. [23]

      [23] DELLEY B. An all-electron numerical method for solving the local density functional for polyatomic molecules[J]. J Chem Phys, 1990, 92(1):508-517.

    24. [24]

      [24] DELLEY B. From molecules to solids with the DMol(3) approach[J]. J Chem Phys, 2000, 113(18):7756-7764.

    25. [25]

      [25] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18):3865-3868.

    26. [26]

      [26] PERDEW J P, YUE W. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys Rev B, 1992, 45(23):13244-13249.

    27. [27]

      [27] TKATCHENKO A, SCHEFFLER M. Accurate molecular van der waals interactions from ground-state electron density and free-atom reference data[J]. Phys Rev Lett, 2009, 102:073005.

    28. [28]

      [28] ORTMANN F, BECHSTEDT F, SCHMIDT W G. Semiempirical van der Waals correction to the density functional description of solids and molecular structures[J]. Phys Rev B, 2006, 73:205101.

    29. [29]

      [29] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Phys Rev B, 1976, 13(12):5188-5192.

    30. [30]

      [30] DELLEY B. Hardness conserving semilocal pseudopotentials[J]. Phys Rev B, 2002, 66:155125.

    31. [31]

      [31] ATACA C, AKTURK E, CIRACI S. Hydrogen storage of calcium atoms adsorbed on graphene:First-principles plane wave calculations[J]. Phys Rev B, 2009, 79:041406.

    32. [32]

      [32] BEHESHTI E, NOJEH A, SERVATI P. A first-principles study of calcium-decorated, boron-doped graphene for high capacity hydrogen storage[J]. Carbon, 2011, 49(5):1561-1567.

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    3. [3]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    6. [6]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    7. [7]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    8. [8]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    9. [9]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    10. [10]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    11. [11]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    12. [12]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    13. [13]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    14. [14]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    15. [15]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    16. [16]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    17. [17]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    18. [18]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    19. [19]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    20. [20]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

Metrics
  • PDF Downloads(0)
  • Abstract views(721)
  • HTML views(100)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return