Citation: GUO Wan-qiu, ZHANG Ya-ping, WANG Wen-xuan, ZHAO Ming, WANG Jun-jie, SHEN Kai, WANG Long-fei, YANG Lin-jun. Study on the surface properties of TiO2-SnO2 supported catalysts for low temperature selective catalytic reduction of NOx[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(11): 1393-1401. shu

Study on the surface properties of TiO2-SnO2 supported catalysts for low temperature selective catalytic reduction of NOx

  • Corresponding author: ZHANG Ya-ping, 
  • Received Date: 22 May 2015
    Available Online: 28 July 2015

    Fund Project: 国家自然科学基金(51306034) (51306034)国家重点基础研究发展规划(973计划,2013CB228505) (973计划,2013CB228505)江苏省自然科学基金(BK2012347)资助项目 (BK2012347)

  • TiO2-SnO2 mixed oxide was prepared by a co-precipitation method and xCeO2/TiO2-SnO2 catalysts were prepared using the impregnation method. The physicochemical properties were investigated by X-ray diffraction (XRD), BET specific surface area measurement, H2 temperature-programmed reduction (H2-TPR), NH3 temperature-programmed desorption (NH3-TPD), high-resolution transmission electron microscopy (HRTEM), and in situ diffuse reflectance infrared spectroscopy (DRIFTS). Meanwhile, their catalytic performance for the selective catalytic reduction of NOx with NH3(NH3-SCR)was tested. It was found that 0.1Ce/TiO2-SnO2 had higher NOx conversion and wider temperature range of 250~350℃. Excess loading of CeO2 could lead to the decrease of specific surface area, redox ability and adsorption capacity of ammonia as well as the shrink of effective catalytic temperature range. NH3-TPD result showed that the adsorption of NH3 in weak acid and medium acid sites were significantly enhanced by CeO2, which was related to the decrease of NH3-SCR reaction temperature. In situ DRIFTS indicated that the strength of Lewis acid sites and Brønsted acid Sites were markedly enhanced for xCeO2/TiO2-SnO2 catalyst. Besides, new Brønsted acid Sites appeared at 1657~1666cm-1 and NH4+ played the dominant role in the SCR reaction.
  • 加载中
    1. [1]

      [1] BUSCA G, LIETTI L, RAMIS G, BERTI F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review[J]. Appl Catal B: Environ, 1998, 18(1): 1-36.

    2. [2]

      [2] ALEMANY L J, BERTI F, BUSCA G, RAMIS G, ROBBA D, TOLEDO G P, TROMBETTA M. Characterization and composition of commercial V2O5 -WO3 -TiO2 SCR catalysts[J]. Appl Catal B: Environ, 1996, 10(4): 299-311.

    3. [3]

      [3] LAURA C, LUCA L, ISABELLA N, PIO F, ALFONS B. SCR of NO by NH3 over TiO2-supported V2O5-MoO3 catalysts: Reactivity and redox behavior[J]. Appl Catal B: Environ, 1999, 22(1): 63-77.

    4. [4]

      [4] CHEN J, YANG R. Role of WO3 in mixed V2O5-WO3/TiO2 catalysts for selective catalytic reduction of nitric oxide with ammonia[J]. Appl Catal A: Gen, 1992, 80(1): 135-148.

    5. [5]

      [5] DJERAD S, CROCOLL M, KURETI S, TIFOUTI L, WEISWEILER W. Effect of oxygen concentration on the NOx reduction with ammonia over V2 O5-WO3/TiO2 catalyst[J]. Catal Today, 2006, 113(3): 208-214.

    6. [6]

      [6] YATES M, MARTÍN J A, MARTÍN-LUENGO M Á, SUÁREZ S, BLANCO J. N2O formation in the ammonia oxidation and in the SCR process with V2O5-WO3 catalysts[J]. Catal Today, 2005, 107: 120-125.

    7. [7]

      [7] QI G, YANG R. Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania[J]. Appl Catal B: Environ, 2003, 44(3): 217-225.

    8. [8]

      [8] 孙克勤, 钟秦. 火电厂烟气脱硝技术及工程应用[M]. 北京: 化学工业出版社, 2007: 9-23. (SUN Ke-qin, ZHONG Qin. Denitrification technology and engineering application of thermal power plant[M]. Beijing: Chemical Industry Press, 2007: 9-23.)

    9. [9]

      [9] BUENO P R, CASSIA-SANTOS M R, SIMÕES L G P, GOMES J W, LONGO E, VARELAJ A. Low-voltage varistor based on (Sn, Ti)O2 ceramics[J]. J Am Ceram Soc, 2002, 85(1): 282-284.

    10. [10]

      [10] REDDY Y A K, REDDY A S, REDDY P S. Influence of oxygen partial pressure on the physical properties of Ag doped NiO thin films[C]. Recent trends in Applied Physics & Material Science, 2013, 1536: 475-476.

    11. [11]

      [11] FRESNO F, CORONADOA J M, TUDELA D, SORIA J. Influence of the structural characteristics of Ti1-xSnxO2 nanoparticles on their photocatalytic activity for the elimination of methylcyclohexane vapors[J]. Appl Catal B: Environ, 2005, 55(3): 159-167.

    12. [12]

      [12] NAJBAR M, MIZUKAMI F, BIAŁAS A, CAMRA J, WESEŁUCHA-BIRCZYHSKA A, IZUTSU H, GÓRA A. Evolution of Ti-Sn-rutile-supported V2O5-WO3 catalyst during its use in nitric oxide reduction by ammonia[J]. Top Catal, 2000, 11(1/4): 131-138.

    13. [13]

      [13] BANAS J, TOMASIC V, WESEŁCHA -BIRCZYNSKA A, NAJBAR M. Structural sensitivity of NO decomposition over a VOW/Ti (Sn) O2 catalyst[J]. Catal Today, 2007, 119(1/4): 199-203.

    14. [14]

      [14] CHEN M, YANG J, LIU Y, LI W, FAN J,RAN X, TENG W, SUN Y, ZHANG W, LI G, DOU S, ZHAO D. TiO2 interpenetrating networks decorated with SnO2 nanocrystals: Enhanced activity of selective catalytic reduction of NO with NH3[J]. J Mater Chem A, 2015, 3(4): 1405-1409.

    15. [15]

      [15] 邓珊珊, 李永红, 李晓良. MnOx-SnO2/TiO2 型催化剂低温NH3选择性催化还原NO[J]. 化工进展, 2013, 32(10): 2403-2408. (DENG Shan-shan, LI Yong-hong, LI Xiao-liang. Low-temperature selective catalytic reduction of NO with NH3 over manganese and tin oxides supported on titania[J]. Chem Ind Eng Prog (China), 2013, 32(10): 2403-2408.)

    16. [16]

      [16] REDDY B M, KHAN A, YAMADA Y, KOBAYASHI T, LORIDANT S, VOLTA J C. Structural characterization of CeO2-TiO2 and V2O5/CeO2-TiO2 catalysts by Raman and XPS techniques[J]. J Phys Chem B, 2003, 107(22): 5162-5167.

    17. [17]

      [17] ITO E, HULTERMANS R J, LUGT P M, BURGERS M H W, RIGUTTO M S, BEKKUM H V, BLEEK C M V. Selective reduction of NOx with ammonia over cerium-exchanged mordenite[J]. Appl Catal B: Environ, 1994, 4(1): 95-104.

    18. [18]

      [18] PAN W, ZHOU Y, GUO,R, ZHEN W, HONG J, XU H, JIN Q, DING C, GUO S. Influence of calcination temperature on CeO2-CuO catalyst for the selective catalytic reduction of NO with NH3[J]. Environ Prog Sust Energy, 2014, 33(2): 385-389.

    19. [19]

      [19] 熊志波, 郭东旭, 路春美, 张信莉. 铁铈复合氧化物催化剂SCR脱硝反应动力学研究[J]. 燃料化学学报, 2015, 41(4): 506-512. (XIONG Zhi-bo, GUO Dong-xu, LU Chun-mei, ZHANG Xin-li. Kinetic study on the selective catalytic reduction of NO with NH3 over iron-cerium mixed oxide[J]. J Fuel Chem Technol, 2015, 41(4): 506-512.)

    20. [20]

      [20] LI X, LI Y, DENG S, RONGA T A. A Ce-Sn-Ox catalyst for the selective catalytic reduction of NOx with NH3[J]. Catal Commun, 2013, 40: 47-50.

    21. [21]

      [21] LIU Z, OH K S, WOO S I. Promoting effect of CeO2 on NOx reduction with propene over SnO2/Al2O3 catalyst studied with in situ FT-IR spectroscopy[J]. Catal Lett, 2008, 120(1/2): 143-147.

    22. [22]

      [22] YU M, LI C, ZENG G, ZHOU Y, ZHANG X, XIE Y. The selective catalytic reduction of NO with NH3 over a novel Ce-Sn-Ti mixed oxides catalyst: Promotional effect of SnO2[J]. Appl Surf Sci, 2015, 342: 174-182.

    23. [23]

      [23] ZHANG L, LI L, CAO Y, XIONG Y, WU S, SUN J, TANG C, GAO F, DONG L. Promotional effect of doping SnO2 into TiO2 over a CeO2/TiO2 catalyst for selective catalytic reduction of NO by NH3[J]. Catal Sci Technol, 2015, 5(4): 2188-2196.

    24. [24]

      [24] 相玮, 张亚平, 沈凯, 郑晓红, 宋正兴, 金保昇, 陈砚雄. 铈对钒系 Ti-Sn基 SCR 脱硝催化剂的改性研究[J]. 中南大学学报, 2014, 45(9): 3315-3321. (XIANG Wei, ZHANG Ya-ping, SHEN Kai, ZHENG Xiao-hong, Song Zheng-xing, JIN Bao-sheng, CHEN Jian-xiong. Influence of ceria modification on properties of TiO2-SnO2 supporting V2O5 catalysts for selective catalytic reduction of NO by NH3[J]. J Cent South Univ, 2014, 45(9): 3315-3321.)

    25. [25]

      [25] 辛勤, 罗孟飞. 现代催化研究方法[M]. 北京: 科学出版社, 2009: 83. (XIN Qin, LUO Meng-fei. Modern catalytic research methods[M]. Beijing: Science Press, 2009: 83.)

    26. [26]

      [26] GIAKOUMELOU I, FOUNTZOULA C, KORDULIS C, BOGHOSIANA S. Molecular structure and catalytic activity of V2O5/TiO2 catalysts for the SCR of NO by NH3: In situ Raman spectra in the presence of O2, NH3, NO, H2, H2O, and SO2[J]. J Catal, 2006, 239(1): 1-12.

    27. [27]

      [27] PARK P W, KUNG H H, KIM D W, KUNG M C. Characterization of SnO2/Al2O3 lean NOx catalysts[J]. J Catal, 1999, 184(2): 440-454.

    28. [28]

      [28] WANG X, XIE Y. Preparation and characterization of SnO2-based composite metal oxides: Active and thermally stable catalysts for CH4 oxidation[J]. Catal Lett, 2001, 75(1/2): 73-80.

    29. [29]

      [29] 赵鹤云, 赵忠泽, 赵义芬, 柳清菊. SnO2纳米棒的氧化还原特性[J]. 催化学报, 2010, 31(1): 44-48. (ZHAO He-yun, ZHAO Zhong-ze, ZHAO Yi-fen, LIU Qing-Ju. The redox properties of SnO2 nanorods[J]. Chin J Catal, 2010, 31(1): 44-48.)

    30. [30]

      [30] MIŠTA W, MAŁGORZATA A. KEPIÑSKI M L. Redox behavior of nanocrystalline Ce1-xLuxO2-x/2 mixed oxide obtained by microemulsion method[J]. Appl Catal A: Gen, 2009, 368(1): 71-78.

    31. [31]

      [31] SUN M, ZOU G, XU S, WANG X. Nonaqueous synthesis, characterization and catalytic activity of ceria nanorods[J]. Mater Chem Phys, 2012, 134(2): 912-920.

    32. [32]

      [32] SUN C, DONG L, YU W, LIU L, LI H, GAO F, LIN DONG L, CHEN L. Promotion effect of tungsten oxide on SCR of NO with NH3 for the V2O5-WO3/Ti0.5Sn 0.5O2 catalyst: Experiments combined with DFT calculations[J]. J Mol Catal A: Chem, 2011, 346(1): 29-38.

    33. [33]

      [33] FAN Y, BAO X, WANG H, CHEN C, SHI G. A surfactant-assisted hydrothermal deposition method for preparing highly dispersed W/γ-Al2O3 hydrodenitrogenation catalyst[J]. J Catal, 2007, 245(2): 477-481.

    34. [34]

      [34] FERDOUS D, DALAI A K, ADJAYE J. A series of NiMo/Al2O3 catalysts containing boron and phosphorus: Part II. Hydrodenitrogenation and hydrodesulfurization using heavy gas oil derived from Athabasca bitumen[J]. Appl Catal A: Gen, 2004, 260(2): 153-162.

    35. [35]

      [35] LONG R, YANG R. Reaction mechanism of selective catalytic reduction of NO with NH3 over Fe-ZSM-5 catalyst[J]. J Catal, 2002, 207(2): 224-231.

    36. [36]

      [36] RAMIS G, YI L, BUSCA G, TURCO M, KOTUR E, WILLEY R J. Adsorption, activation, and oxidation of ammonia over SCR catalysts[J]. J Catal, 1995, 157(2): 523-535.

    37. [37]

      [37] WU Z, JIANG B, LIU Y, WANG H, JIN R. DRIFT study of manganese/titania-based catalysts for low-temperature selective catalytic reduction of NO with NH3[J]. Environ Sci Technol, 2007, 41(16): 5812-5817.

    38. [38]

      [38] RAMIS G, BUSCA G, BREGANI F, FORZATTI P. Fourier transform-infrared study of the adsorption and coadsorption of nitric oxide, nitrogen dioxide and ammonia on vanadia-titania and mechanism of selective catalytic reduction[J]. Appl Catal, 1990, 64: 259-278.

    39. [39]

      [39] RAMIS G, YI L, BUSCA G. A mmonia activation over catalysts for the selective catalytic reduction of NOx and the selective catalytic oxidation of NH3. An FT-IR study[J]. Catal Today, 1996, 28(4): 373-380.

  • 加载中
    1. [1]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

    2. [2]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    3. [3]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    4. [4]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    7. [7]

      Yang LiYanan DongZhihong WeiChangzeng YanZhen LiLin HeYuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206

    8. [8]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    9. [9]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    10. [10]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    11. [11]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    12. [12]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    13. [13]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    14. [14]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    15. [15]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    16. [16]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    17. [17]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    18. [18]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    19. [19]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    20. [20]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

Metrics
  • PDF Downloads(0)
  • Abstract views(469)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return