Citation: CHEN Hong-xian, NING Wen-sheng, CHEN Chun-hua, ZHANG Tian. Influence of Fe2O3 crystal phase on the performance of Fe-based catalysts for CO2 hydrogenation[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(11): 1387-1392. shu

Influence of Fe2O3 crystal phase on the performance of Fe-based catalysts for CO2 hydrogenation

  • Corresponding author: NING Wen-sheng, 
  • Received Date: 24 April 2015
    Available Online: 5 June 2015

    Fund Project: 浙江省自然科学基金(LY14B030003) (LY14B030003)国家科技支撑计划(2014BAD02B05)资助项目 (2014BAD02B05)

  • FeAl precursors (remarked as P) were prepared by co-precipitation method. Then they were impregnated with promoter Zn, K and Cu into ZnKCu/FeAl catalysts (remarked as C). The precursors and catalysts were characterized by low temperature N2 adsorption, XRD and H2-TPR. CO2 hydrogenation over these catalysts was investigated in a fixed-bed reactor. With the addition of Al, the specific surface area of FeAl precursors and ZnKCu/FeAl catalysts was increased relative to that of Al-free samples. On the contrary, the crystallite size of a-Fe2O3 was decreased by the added Al. The dispersed degree of Cu was raised in the catalysts containing Al. It is benefit for the reduction of ZnKCu/FeAl catalysts. However, the specific surface area and a -Fe2O3 crystallite size of P-10 and C-10, in which the Al2O3/Fe2O3 mass ratio is 10%, were similar to those of P-5 and C-5 with 5% Al 2O3/Fe2O3 mass ratio, respectively. The phenomena were resulted from the strong g-Fe2O3 phase in P-10 and C-10. It was evidenced that g-Fe2O3 was formed only in the case of Fe and Al were co-precipitated, and the precipitate was washed by anhydrous ethanol in this study. The catalyst with strong g-Fe2O3 phase was more active in CO2 hydrogenation than the catalysts with none or weak g-Fe2O3 phase. This correlation was supported by the comparison between two catalysts with the same Al content, but different Fe2O3 phases in them.
  • 加载中
    1. [1]

      [1] LEE M D, LEE J F, CHANG C S. Hydrogenation of carbon-dioxide on unpromoted and potassium-promoted iron catalysts[J]. Bull Chem Soc Jpn, 1989, 62(8): 2756-2758.

    2. [2]

      [2] NOZAKI F, SODESAWA T, SATHOH S, KIMURA K. Hydrogenation of carbon dioxide into light hydrocarbons at atmospheric pressure over Rh/Nb2O5 or Cu/SiO2-Rh/Nb2O5 catalyst[J]. J Catal, 1987, 104(2): 339-346.

    3. [3]

      [3] SCHILD C, WOKAUM A, KOPPEL R A, BAIKER A. CO2 hydrogenation over nickel/zirconia catalysts from amorphous precursors: On the mechanism of methane formation[J]. J Phys Chem, 1991, 95(16): 6341-6346.

    4. [4]

      [4] WILLIAMS K J, BOFFA A B, SALMERON M, BELL A T, SOMORJAI G A. The kinetics of CO2 hydrogenation on a Rh foil promoted by titania overlayers[J]. Catal Lett, 1991, 9(5/6): 415-426.

    5. [5]

      [5] 张燕, 卢晗锋, 黄海凤, 刘华彦, 陈银飞. 高热稳定性Cu-Mn-O催化燃烧催化剂的制备[J]. 分子催化, 2008, 22(6): 503-506. (ZHANG Yan, LU Han-feng, HUANG Hai-feng, LIU Hua-yan, CHEN Yin-fei. Preparation of the high thermal stable Cu-Mn-O catalysts for VOCs catalytic combustion[J]. J Mol Catal (China), 2008, 22(6): 503-506.)

    6. [6]

      [6] LI S Z, KRISHNAMOORTHY S, LI A W, MEITNER G D, IGLESIA E. Promoted Iron-Based catalysts for the Fischer-Tropsch synthesis: Design, synthesis, site densities, and catalytic properties[J]. J Catal, 2002, 206: 202-217.

    7. [7]

      [7] WAN H J, WU B S, ZHANG C H, XIANG H W, LI Y W, XU B F, YI F. Study on Fe-Al2O3 interaction over precipitated iron catalyst for Fischer-Tropsch synthesis[J]. Catal Commun, 2007, 8(10): 1538-1545.

    8. [8]

      [8] JUN K W, ROH H S, KIM K S, LEE K W. Catalytic investigation for Fischer-Tropsch synthesis from biomass derived syngas[J]. Appl Catal A: Gen, 2004, 259(2): 221-226.

    9. [9]

      [9] BUKUR D B, SIVARAJ C. Supported iron catalysts for slurry phase Fischer-Tropsch synthesis[J]. Appl Catal A: Gen, 2002, 231(1/2): 201-214.

    10. [10]

      [10] 万海军, 吴宝山, 李廷镇, 陶智超, 安霞, 相宏伟, 李永旺. 结构助剂SiO2、Al2O3对铁基催化剂浆态床F-T合成性能的影响[J]. 燃料化学学报, 2007, 35(5): 589-594. (WAN Hai-jun, WU Bao-shan, LI Yao-zhen, TAO Zhi-chao, AN Xia, XIANG Hong-wei, LI Yong-wang. Effects of SiO2 and Al2O3 on performance of iron-based catalysts for slurry Fischer-Tropsch synthesis[J]. J Fuel Chem Technol, 2007, 35(5): 589-594.)

    11. [11]

      [11] NING W S, KOIZUMI N, YAMADA M. Researching Fe catalyst suitable for CO2-containing syngas for Fischer-Tropsch synthesis[J]. Energy Fuels, 2009, 23: 4696-4700.

    12. [12]

      [12] NING W S, YAMADA M. To synthesize liquid fuels on precipitated Fe catalyst with CO2-containing syngas gasified from biomass[C]. Lee J. Advanced Biofuels and Bioproducts. New York: Springer Science+Business Media, 2013, 225-243.

    13. [13]

      [13] 胡亮华, 王小琴, 宁文生, 刘化章. 干燥温度对Co/SiO2费托合成催化剂结构和性能的影响[J]. 工业催化, 2011, 19(10): 14-18. (HU Liang-hua, WANG Xiao-qin, NING Wen-sheng, LIU Hua-zhang. Efects of dry temperature on the structure and properties of Co/SiO2 catalyst for Fischer-Tropsch synthesis[J]. Ind Catal, 2011, 19(10): 14-18.)

    14. [14]

      [14] 李志远, 姜斌, 张吕鸿, 陈霭蕃, 罗瑞贤. 纳米氧化铁的制备及其掺杂效应[J]. 化学工业与工程, 2003, 20(6): 498-502. (LI Zhi-yuan, JIANG Bin, ZHANG Lü-hong, CHEN Ai-fan, LUO Rui-xian. Preparation of iron oxide nanoparticles and its doping effect[J]. Chem Ind Eng, 2003, 20(6): 498-502.)

    15. [15]

      [15] 张丽华, 王子忱, 荆维杰, 赵慕愚. 掺杂Al3+γ-Fe2O3纳米晶性能的影响[J]. 吉林大学自然科学学报, 1998, (1): 94-96. (ZHANG Li-hua, WANG Zi-chen, JIN Wei-jie, ZHAO Mu-yu. Effect of doped with A13+ on the properties of γ-Fe2O3 nanocrystalline[J]. Acta Sci Nat Univ Jilin, 1998, (1): 94-96.)

    16. [16]

      [16] 刘海峰, 彭同江, 孙红娟, 马国华. Cu掺杂α-Fe2O3纳米粉体的掺杂量分析与X射线衍射研究[J] .分析测试学报, 2009, 28(1): 7-11. (LIU Hai-feng, PENG Tong-jiang, SUN Hong-juan, MA Guo-hua. Analysis of Cu-doping amount and study on X-ray diffraction for Cu-doped α-Fe2O3 Nano-power[J]. J Instrum Anal, 2009, 28(1): 7-11.)

    17. [17]

      [17] ZHANG C H, CHU W, XU H Y, ZHOU J. Plasma-assisted preparation of Fe-Cu bimetal catalyst for higher alcohols synthesis from carbon monoxide hydrogenation[J]. Fuel, 2010, 89(10): 3127-3131.

    18. [18]

      [18] ZHANG C H, YANG Y, TENG B T, LI T Z, ZHENG H Y, XIANG H W, LI Y W. Study of an iron-manganese Fischer-Tropsch synthesis catalyst promoted with copper[J]. J Catal, 2006, 237(2): 405-415.

    19. [19]

      [19] LI S Z, DING W P, MEITZNEI G D, IGLESIA E. Spectroscopic and transient kinetic studies of site requirements in iron-catalyzed Fischer-Tropsch synthesis[J]. J Phys Chem B, 2002, 106(1): 85-91.

    20. [20]

      [20] WAN H J, WU B S, AN X, LI T Z, TAO Z C, XIANG H W, LI Y W. Effect of Al2O3 binder on the precipitated Iron-Based catalysts for Fischer-Tropsch synthesis[J]. J Nat Gas Chem, 2007, 16(2): 130-138.

    21. [21]

      [21] 倪军, 王榕, 郑瑛, 林建新, 魏可镁. 纳米γ-Fe2O3载体的制备及Ru-K/Fe2O3催化剂的氨合成催化剂评价[J]. 催化学报, 2007, 28(1): 62-66. (NI Jun, WANG Rong, ZHENG Ying, LIN Jian-xin, WEI Ke-mei. Preparation of γ-Fe2O3 support and evaluation of catalystic activity of Ru-K/Fe2O3 catalyst for ammonia synthesis[J]. Chin J Catal, 2007, 28(1): 62-66.)

    22. [22]

      [22] 董跃, 赵玉琼, 张永发. CO催化变换制氢反应机理及传统变换催化剂研究进展[J]. 山西能源与节能, 2009, (2): 67-75. (DONG Yue, ZHAO Yu-qiong, ZHANG Yong-fa. Reaction mechanism of RWGS and development of traditional shift catalyst[J]. Shanxi Energy Conserv, 2009, (2): 67-75.)

  • 加载中
    1. [1]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    4. [4]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    5. [5]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    6. [6]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    9. [9]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    10. [10]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    11. [11]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    12. [12]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    13. [13]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    14. [14]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    15. [15]

      Jingzhuo Tian Chaohong Guan Haobin Hu Enzhou Liu Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068

    16. [16]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    17. [17]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    18. [18]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    19. [19]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    20. [20]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

Metrics
  • PDF Downloads(0)
  • Abstract views(850)
  • HTML views(117)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return