Citation: ZHANG Rong-jun, XIA Guo-fu, LI Ming-feng, WU Yu, NIE Hong, LI Da-dong. Effect of support on catalytic performance of Ni-based catayst in methane dry reforming[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(11): 1359-1365. shu

Effect of support on catalytic performance of Ni-based catayst in methane dry reforming

  • Corresponding author: ZHANG Rong-jun, 
  • Received Date: 13 April 2015
    Available Online: 20 September 2015

    Fund Project: 中国石油化工股份有限公司合同项目(113128)资助 (113128)

  • Ni-based catalysts with different supports were prepared for methane dry reforming. The obtained catalysts were characterized by N2 physisorption, XRD, H2-TPR, H2-chemisorption, and so on. It was revealed that the support had significant influence on the state of NiO species. SiO2, TiO2 and ZrO2 had weak interaction with NiO, facilitating the reduction of the corresponding catalysts. Al2O3 and MgO have strong interaction with NiO, making them very difficult to be reduced. Al2O3 modified by MgO has both proper texture properties and interaction strength between metal and support, which were in favor of the dispersion and stabilization of NiO species. Superior catalytic performance was observed over this catalyst under very high gas hourly space velocity. Stable catalytic performance was achieved during a long term run of more than 100h.
  • 加载中
    1. [1]

      [1] 刘炳泗, 巩家志, 区泽棠. La2NiO4/Al2O3催化剂上CH4/CO2的重整[J]. 催化学报, 2004, 25(1): 15-18. (LIU Bing-si, GONG Jia-zhi, OU Ze-tang. CH4/CO2 reforming over La2NiO4/Al2O3 catalyst[J]. Chin J Catal, 2004, 25(1): 15-18.)

    2. [2]

      [2] HU Y, RUCKENSTEIN E. Binary MgO-based solid solution catalysts for methane conversion to syngas[J]. Catal Rev, 2002, 44(3): 423-453.

    3. [3]

      [3] 赵雅郡, 刘欣梅, 钱岭, 阎子峰. 新型纳米介孔二氧化锆担载的镍基催化剂甲烷干气重整性能评价[J]. 分子催化, 2004, 18(5): 346-350. (ZHAO Ya-jun, LIU Xin-mei, QIAN Ling, YAN Zi-feng. CH4 reforming with CO2 over mesoporous nano-zirconia supported Ni-based catalyst[J]. J Mol Catal (China), 2004, 18(5): 346-350.)

    4. [4]

      [4] BRADFORD M C J, VANNICE M A. CO2 reforming of CH4[J]. Catal Rev: Sci Eng, 1999, 41(1): 1-42.

    5. [5]

      [5] FISCHER F, TROPSCH H, Conversion of methane into hydrogen and carbon monoxide[J]. Brennst Chem, 1928, 9: 39-46.

    6. [6]

      [6] ASHCROFT A T, CHEETHAN A K, GREEN M L H, VERNON P D F. Partial oxidation of methane to synthesis gas-using carbon-dioxide[J]. Nature, 1991, 352: 225-226.

    7. [7]

      [7] WANG Y H, RUCKENSTEIN E. Carbon dioxide reforming of methane to synthesis gas over supported rhodium catalysts: The effect of support[J]. Appl Catal A: Gen, 2000, 204(1): 143-152.

    8. [8]

      [8] NAGAI M, NAKAHIRA K, OZAWA Y, NAMIKI Y, SUZUKI Y. CO2 reforming of methane on Rh/Al2O3 catalyst[J]. Chem Eng Sci, 2007, 62(18/ 20): 4998-5000.

    9. [9]

      [9] JORGE D A BELLIDO, JOSE E DE SOUZA, JEAN-CLAUDE MPEKO, ELISABETE M A. Effect of adding CaO to ZrO2 support on nickel catalyst activity in dry reforming of methane[J]. Appl Catal A: Gen, 2009, 358: 215-223.

    10. [10]

      [10] XU B Q, WEI J M, WANG H Y, SUN K Q, ZHU Q M. Nano-MgO: Novel preparation and application as support of Ni catalyst for CO2 reforming of methane[J]. Catal Today, 2001, 68: 217-225.

    11. [11]

      [11] KATSUTOSHI N, KAZUHIRO T, KEN-ICHI A. Influence of the phase composition of titania on catalytic behavior of Co/TiO2 for the dry reforming of methane[J]. Chem Commun, 2002, 1006-1007.

    12. [12]

      [12] KEIICHI T, CHEN Y G, FUJIMOTO K. Studies on carbon deposition in CO2 reforming of CH4 over nickel-magnesia solid solution catalysts[J]. J Catal, 1999, 181(1): 91-103.

    13. [13]

      [13] XU B Q, WEI J M, YU Y T, LI Y, LI J L, ZHU Q M. Size limit of support particles in an oxide-supported metal catalyst: Nanocomposite Ni/ZrO2 for utilization of natural gas[J]. J Phys Chem B, 2003, 107: 5203-5207.

    14. [14]

      [14] SEOK S, CHOI S, PARK E, HAN S, LEE J. Mn-Promoted Ni/Al2O3 catalysts for stable carbon dioxide reforming of methane[J]. J Catal, 2002, 209: 6-15.

    15. [15]

      [15] 杨雅仙, 秦大伟, 谢辉. MgO改性Ni/γ-Al2O3催化剂用于甲烷重整制取合成气研究[J]. 天然气化工, 2012, 37(6): 40-43, 62. (YANG Ya-xian, QIN Da-wei, XIE Hui. Preparation of syngas by methane reforming over magnesium oxide modified nickel/γ-alumina[J]. Nat Gas Chem Ind, 2012, 37(6): 40-43, 62.)

    16. [16]

      [16] KIM J, SUH D J, PARK T, KIM K. Effect of metal particle size on coking during CO2 reforming of CH4 over Ni-alumina aerogel catalysts[J]. Appl Catal A: Gen, 2000, 197: 191-200.

    17. [17]

      [17] JACONO M L, SCHIVAVELLO M, CIMINO A. Structural, magnetic, and optical properties of nickel oxide supported on η- and γ-aluminas[J]. J Phys Chem, 1971, 75: 1044-1046.

    18. [18]

      [18] ZHANG R J, LIU H M, HE D H. Pure monoclinic ZrO2 prepared by hydrothermal method for isosynthesis[J]. Catal Commun, 2012, 26: 244-247.

    19. [19]

      [19] GAO J J, JIA C M, ZHANG M J, GU F N, XU G W, SU F B. Effect of nickel nanoparticle size in Ni/α-Al2O3 on CO methanation reaction for the production of synthetic natural gas[J]. Catal Sci Technol, 2013, 3: 2009-2015.

    20. [20]

      [20] XU G L, SHI K Y, GAO Y, XU H Y, WEI Y D. Studies of reforming natural gas with carbon dioxide to produce synthesis gas X. The role of CeO2 and MgO promoters[J]. J Mol Catal A: Chem, 1999, 147: 47-54.

    21. [21]

      [21] ZHU J Q, PENG X X, YAO L, DENG X J, DONG H Y, TONG D M. Synthesis gas production from CO2 reforming of methane over Ni-Ce/SiO2 catalyst: The effect of calcination ambience[J]. Int J Hydrogen Energy, 2013, 38(1): 117-126.

    22. [22]

      [22] ZHANG Z L, VERYKIOS X E, BAERNS M. Effect of electronic properties of catalysts for the oxidative coupling of methane on their selectivity and activity[J]. Catal Rev: Sci Eng, 1994, 36: 507-556.

    23. [23]

      [23] MICHAEL C J, VANNICE M A. Catalytic reforming of methane with carbon dioxide over nickel catalysts I. Catalyst characterization and activity[J]. Appl catal A: Gen, 1996, 142(1): 73-96.

  • 加载中
    1. [1]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    2. [2]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    3. [3]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    4. [4]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    5. [5]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    6. [6]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    7. [7]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    8. [8]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    9. [9]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    11. [11]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    12. [12]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    13. [13]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    14. [14]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    15. [15]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    16. [16]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    17. [17]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    18. [18]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    19. [19]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    20. [20]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

Metrics
  • PDF Downloads(0)
  • Abstract views(729)
  • HTML views(69)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return