Citation: LI Teng, CHEN Xiao-bo, DING Xue-mei, LIANG Wei, XIN Li, LI Nan, YANG Chao-he. Effect of model nitrogen containing compounds on the catalytic cracking of o-xylene[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(11): 1344-1349. shu

Effect of model nitrogen containing compounds on the catalytic cracking of o-xylene

  • Corresponding author: CHEN Xiao-bo, 
  • Received Date: 11 April 2015
    Available Online: 29 June 2015

    Fund Project: 国家自然科学基金(21476263) (21476263)国家自然科学基金青年科学基金项目(21206198)资助 (21206198)

  • The effects of different model nitrogen containing compounds on the catalytic cracking of o-xylene were investigated in a fixed bed. The adding amount of N element was 4000μg/g and the active component of the catalyst was USY zeolite. The results indicated that the conversion of o-xylene is reduced by adding pyridine or quinoline. On one hand, the increase in coke yield after adding acridine is related with its adsorption on catalysts. On the other hand, acridine induces o-xylene to produce more coke and hydrogen, promoting the hydrogenation and opening reactions of aromatic rings. Compared with the blank test, the conversion of o-xylene is improved slightly by adding acridine, and both the yield of dry gas and the yield of LPG increase greatly.
  • 加载中
    1. [1]

      [1] 陈俊武, 卢捍卫. 催化裂化在炼油厂中的地位和作用展望[J]. 石油学报(石油加工), 2003, 19(1): 1-11. (CHEN Jun-wu, LU Han-wei. Prospects of status and role of FCC in refinery[J]. Acta Pet Sin: Pet Process Sect, 2003, 19(1): 1-11.)

    2. [2]

      [2] 陈小博, 孙金鹏, 沈本贤, 李春义, 杨朝合, 山红红, 曾飞峙. 碱性氮化物对USY和ZSM-5型催化裂化催化剂催化性能的影响[J]. 中国石油大学学报(自然科学版), 2012, 36(5): 164-168. (CHEN Xiao-bo, SUN Jin-peng, SHEN Ben-xian, LI Chun-yi, YANG Chao-he, SHAN Hong-hong, ZENG Fei-zhi. Effect of basic nitrogen compounds on catalytic performance of USY and ZSM-5 catalytic cracking catalysts[J]. J Chin Univ Pet, 2012, 36(5): 164-168.)

    3. [3]

      [3] HOU B, CAO Z, CHEN W, HAN J. Properties and chemical composition of typical coker gas oil[J]. Pet Sci Technol, 2007, 25: 1013-1025.

    4. [4]

      [4] WANG G, LI Z, HUANG H, LAN X, XU C, GAO J. Synergistic process for coker gas oil and heavy cycle oil conversion for maximum light production[J]. Ind Eng Chem Res, 2010, 49: 11260-11268.

    5. [5]

      [5] BAE E J, NA J G, CHUNG S H, KIM H S, KIM S. Identification of about 30000 chemical components in shale oils by electrospray ionization (ESI) and atmospheric pressure photoionization (APPI) coupled with 15 T fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and a comparison to conventional oil[J]. Energy Fuels, 2010, 24: 2563-2569.

    6. [6]

      [6] CHEN X, SHEN B, SUN J, WANG C, SHAN H, YANG C, LI C. Characterization and comparison of nitrogen compounds in hydrotreated and untreated shale oil by electrospray ionization (ESI) fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS)[J]. Energy Fuels, 2012, 26: 1707-1714.

    7. [7]

      [7] 傅军, 鲍书林, 须沁华. LaDAlY型沸石的裂解活性和抗氮性能[J]. 催化学报, 1993, 14(3): 203-207. (FU Jun, BAO Shu-lin, LIN Qin-hua. Catalytic cracking activity and nirogen resistance of LaDAlY zeolites[J]. Chin J Catal, 1993, 14(3): 203-207.)

    8. [8]

      [8] YOUNG G W. Fluid catalytic cracker catalyst design for nitrogen tolerance[J]. J Phys Chem, 1986, 90(20): 4894-4900.

    9. [9]

      [9] 许明德, 钟孝湘, 范中碧, 陈祖庇. 催化烈化抗氮剂的探讨[J]. 石油炼制, 1993, 24(4): 34-39. (XU Ming-de, ZHONG Xiao-xiang, FAN Zhong-bi, CHEN Zu-bi. Elemental studies of FCC resistant catalysts[J]. Pet Process, 1993, 24(4): 34-39.)

    10. [10]

      [10] 于道永, 徐海, 阙国和, 王宗贤. 碱性氮化物喹啉催化裂化转化规律的研究[J]. 燃料化学学报, 2004, 32(1): 43-47. (YU Dao-yong, XU Hai, QUE Guo-he, WANG Zong-xian. Study on coversion of basic nitrogen compound quinoline in FCC[J]. J Fuel Chem Techno, 2004, 31(1): 43-47.)

    11. [11]

      [11] CERQUEIRA H S, CAEIRO G, COSTA L, RIBEIRO F R. Deactivation of FCC catalysts[J]. J Mol Catal A: Chem, 2008, 292: 1-13.

    12. [12]

      [12] 李腾, 陈小博, 杨朝合, 李春义. 催化裂化结焦反应的研究进展[J]. 化工进展, 2015, 34(2): 370-375. (LI Teng, CHEN Xiao-bo, YANG Chao-he, LI Chun-yi. Process of coking reaction in fluid catalytic cracking[J]. Chem Ind Eng Prog, 2015, 34(2): 370-375.)

    13. [13]

      [13] FU C M, SCHAFFER A M. Effect of nitrogen compounds on cracking catalysts[J]. Ind Eng Chem Prod Res Dev, 1985, 24(1): 68-75.

    14. [14]

      [14] HO T C, KATRITZKY A R, CATO S J. Effect of nitrogen compounds on cracking catalysts[J]. Ind Eng Chem Res, 1992, 31(7): 1589-1597.

    15. [15]

      [15] CORMA A, FORNES V, MONTON J B. Catalytic cracking of alkanes on large pore, high SiO2/Al2O3 zeolites in the presence of basic nitrogen compounds. Influence of catalyst structure and composition in the activity and selectivity[J]. Ind Eng Chem Res, 1987, 26(5): 882-886.

    16. [16]

      [16] 王劲. 高含氮原料催化裂化反应特性的研究[D]. 山东青岛: 中国石油大学(华东), 2013. (WANG Jin. Studies on the catalytic cracking characteristics of feedstock containing high content of nitrogen compounds[D]. Qingdao: China University of Petroleum (East China), 2013.)

    17. [17]

      [17] 高金森, 徐春明, 卢春喜, 毛羽. 对重油催化裂化反应历程的若干再认识[J]. 炼油技术与工程, 2006, 36(12): 1-6. (GAO Jin-sen, XU Chun-ming, LU Chun-xi, MAO Yu. Future understanding of the reaction pathway of residue fluid catalytic cracking[J]. Pet Refin Eng, 2006, 36(12): 1-6.)

    18. [18]

      [18] 叶宗军, 许友好, 汪燮卿. FCC汽油重馏分的催化裂化和热裂化产物组成的研究[J]. 石油学报(石油加工), 2006, 22(3): 46-53. (YE Zong-jun, XU You-hao, WANG Xie-qing. Study on the compositions of products from catalytic cracking and thermal cracking for heavy fractions of FCC gasoline[J]. Acta Pet Sin: Pet Process Sect, 2006, 22(3): 46-53.)

    19. [19]

      [19] CORMA A, ORCHILLES A V. Current views on the mechanism of catalytic cracking[J]. Microporous Mesoporous Mater, 2000, 35-36: 21-30.

    20. [20]

      [20] HAAG W, DESSAU R. Proceedings of the 8th International Congress on Catalysis[J]. Berlin (West), Vol. 2, 1984, 305.

    21. [21]

      [21] 李泽坤, 王刚, 刘银东, 史权, 高金森. CGO关键组分结构分析及其对FCC反应性能的影响[J]. 石油学报(石油加工), 2010, 26: 691-699. (LI Ze-kun, WANG Gang, LIU Yin-dong, SHI Quan, GAO Jin-sen. Structure analysis of key components in coker gas oil and their effects on catalytic cracking reactions[J]. Acta Pet Sin: Pet Process Sect, 2010, 26: 691-699.)

    22. [22]

      [22] 袁起民, 龙军, 谢朝纲, 李正. 高氮原料的催化裂化研究进展[J]. 化工进展, 2008, 27(12): 1929-1936. (YUAN Qi-min, LONG Jun, XIE Chao-gang, LI Zheng. Progress of catalytic cracking of high-nitrogen feedstocks[J]. Chem Ind Eng Prog, 2008, 27(12): 1929-1936.)

    23. [23]

      [23] CHEN X B, LI T, LIU Y B, SHAN H H, YANG C H, LI C Y. Characterization of nitrogen compounds in vacuum residue and their structure comparison with coker gas oil. China petroleum processing and petrochemical technology[J]. China Pet Process Pe, 2014, 16(3): 34-41.

    24. [24]

      [24] CAEIRO G, LOPESA J M, MAGNOUX P, AYRAULT P, RIBEIRO F R. A FT-IR study of deactivation phenomena during methylcyclohexane transformation on H-USY zeolites: Nitrogen poisoning, coke formation, and acidity-activity correlations[J]. J Catal, 2007, 249: 234-243.

  • 加载中
    1. [1]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    2. [2]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    3. [3]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    4. [4]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    5. [5]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    6. [6]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    7. [7]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    8. [8]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    10. [10]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    11. [11]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    12. [12]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    13. [13]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    14. [14]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    15. [15]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    16. [16]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    17. [17]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    18. [18]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    19. [19]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    20. [20]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

Metrics
  • PDF Downloads(0)
  • Abstract views(557)
  • HTML views(56)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return