Citation:
HUANG Jin-bao, WU Shu-bin, LEI Ming, CHENG Hao, LIANG Jia-jin, TONG Hong. Quantum chemistry study on pyrolysis mechanism of lignin dimer model compound[J]. Journal of Fuel Chemistry and Technology,
;2015, 43(11): 1334-1343.
-
β-O-4 is the primary type of linkages among the main lignin structure units. The pyrolysis of lignin dimer model compound of β-O-4 linkage was investigated by using density functional theory B3LYP methods at 6-31G(d,p) level. Three possible pyrolysis pathways were proposed:the subsequent reactions after the homolytic cleavage of Cβ-O bond, the subsequent reactions after the homolytic cleavage of Cα-Cβ bond and the concerted reactions. The equilibrium geometries of the reactants, transition states, intermediates and products were optimized and the standard kinetic parameters for each reaction pathway were calculated. The formation mechanism of the main pyrolysis products and the effect of temperature on the pyrolysis mechanism of lignin dimer were analyzed. The calculation results show that the subsequent reaction pathways after the homolytic cleavage of Cβ-O bond and the concerted reaction pathways (1) and (3) are the major reaction channels, whereas the subsequent reaction pathways after the homolytic cleavage of Cα-Cβ and the concerted reaction pathways (2) and (5) are the competitive reaction channels in the pyrolysis process. The main pyrolysis products are phenolic compounds such as guaiacol, 1-guaiacyl-3-hydroxy-acetone, 1-guaiacyl-3-hydroxy-propaldehyde and guaiacyl-formaldehyde. In the pyrolysis process of the lignin dimer, the concerted reactions dominate over the free-radical homolytic reactions at low temperature, whereas but the free-radical reactions prevail over the concerted reactions at high temperatures.
-
-
-
[1]
[1] 岳金方, 应浩. 工业木质素的热裂解试验研究[J] . 农业工程学报, 2006, 22(增1) : 125-128. (YUE Jin-fang, YING Hao. Experimental study on industrial lignin pyrolysis[J]. Trans Chin Soc Agric Eng, 2006, 22(Supp 1) : 125-128.)
-
[2]
[2] NUNN T R, HOWARD J B, LONGWLL J P, PETERS W A. Product compositions and kinetics in the rapid pyrolysis of milled wood lignin[J]. Ind Eng Chem Process Des Dev, 1985, 24(3): 844-852.
-
[3]
[3] MCKENDRY P. Energy production from biomass (part 1): Overview of biomass[J]. Bioresour Technol, 2002, 83(1): 37-46.
-
[4]
[4] BESTE A, BUCHANAN Ⅲ A C. Computational study of bond dissociation enthalpies for lignin model compounds: Substituent effects in phenethyl phenyl ethers[J]. J Org Chem, 2009, 74(7): 2837-2841.
-
[5]
[5] HUANG X, LIU C, HUANG J, LI H. Theory studies on pyrolysis mechanism of phenethyl phenyl ether[J]. Comput Theor Chem, 2011, 976(1/3): 51-59.
-
[6]
[6] 黄金保, 刘朝, 任丽蓉, 童红, 李伟民, 伍丹. 木质素模化物紫丁香酚热解机理的量子化学研究[J]. 燃料化学学报, 2013, 41(6): 657-666. (HUANG Jin-bao, LIU Chao, REN Li-rong, TONG Hong, LI Wei-min, WU Dan. Studies on pyrolysis mechanism of syringol as lignin model compound by quantum chemistry[J]. J Fuel Chem Technol, 2013, 41(6): 657-666.)
-
[7]
[7] CABALLERO J A, FONT R, MARCILLA A. Study of the primary pyrolysis of kratf lignin at high heating rates: Yields and kineties[J]. J Anal Appl Pyrolysis, 1996, 36(2): 159-178.
-
[8]
[8] 谭洪, 王树荣, 骆仲泱, 余春江, 岑可法. 木质素快速热裂解试验研究[J]. 浙江大学学报(工学版), 2005, 39(5): 710-714. (TAN Hong, WANG Shu-rong, LUO Zhong-yang, YU Chun-jiang, CEN Ke-fa. Experimental study of lignin flash pyrolysis[J]. J Zhejiang Univ (Eng Sci), 2005, 39(5): 710-714.)
-
[9]
[9] WANG S, WANG K, LIU Q, GU Y, LUO Z, CEN K, FRANSSON T. Comparison of the pyrolysis behavior of lignins from different tree species[J]. Biotechnol Adv, 2009, 27: 562-67.
-
[10]
[10] LIU Q, WANG S, ZHENG Y, LUO Z, CEN K. Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis[J]. J Anal Appl Pyrolysis, 2008, 82(1): 170-177.
-
[11]
[11] 刘军利, 蒋剑春, 黄海涛. 木质素CP-GC-MS法裂解行为研究[J]. 林产化学与工业, 2009, 29(suppl): 1-6. (LIU Jun-li, JIANG Jian-chun, HUANG Hai-tao. Study on thermal transformations of lignin under curie-point pyrolysis- gc-ms conditions[J]. Chem Ind For Prod, 2009, 29(suppl): 1-6.)
-
[12]
[12] NAKAMURA T, KAWAMOTO H, SAKA S. Pyrolysis behavior of Japanese cedar wood lignin studied with various model dimmers[J]. J Anal Appl Pyrolysis, 2008, 81: 173-182.
-
[13]
[13] YANG Q, WU S, LOU R, LV G. Analysis of wheat straw lignin by thermogravimetry and pyrolysis-gas hromatography/mass spectrometry[J]. J Anal Appl Pyrolysis, 2010, 87: 65-69.
-
[14]
[14] SURYAN M M, KAFAFI S A, STEIN S E. The thermal decomposition of hydroxy- and methoxy-substituted anisoles[J]. J Am Chem Soc, 1989, 111(4): 1423-1429.
-
[15]
[15] BESTE A, BUCHANAN Ⅲ A C. Computational study of bond dissociation enthalpies for lignin model compounds: Substituent effects in phenethyl phenyl ethers[J]. J Org Chem, 2009, 74(7): 2837-2841.
-
[16]
[16] ASMADI M, KAWAMOTO H, SAKA S. Thermal reactions of guaiacol and syringol as lignin model aromatic nuclei[J]. J Anal Appl Pyrolysis, 2011, 92: 88-98.
-
[17]
[17] HUANG J, LIU C, WU D, TONG H, REN L. Density functional theory studies on pyrolysis mechanism of β-O-4 type lignin dimer model compound[J]. J Anal Appl Pyrolysis, 2014, 109: 98-108.
-
[18]
[18] 蒋挺大. 木质素[M]. 北京: 化学工业出版社, 2001. (JIANG Ting-da. Lignin[M]. Beijing: Chemistry Industry Press, 2001.)
-
[19]
[19] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. GAUSSIAN 03. Gaussian, Inc. Pittsburgh PA, 2003.
-
[20]
[20] BRITT P F, BUCHANAN Ⅲ A C, COONEY M J, MARTINEAU D R. Flash vacuum pyrolysis of methoxy-substituted lignin model compounds[J]. J Org Chem, 2000, 65: 1376-1389.
-
[21]
[21] NIMLOS M R, BLANKSBY S J, QIAN X, HIMMEL M E, JOHNSON D K. Mechanisms of glycerol dehydration[J]. J Phys Chem A, 2006, 110: 6145-6156.
-
[22]
[22] JARVIS M W, DAILY J W, CARSTENSEN H H, DEAN A M, SHARMA S, DAYTON D C, ROBICHAUD D J, NIMLOS M R. Direct detection of products from the pyrolysis of 2-phenethyl phenyl ether[J]. J Phys Chem A, 2011, 115: 428-438.
-
[1]
-
-
-
[1]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[2]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[3]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[4]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[5]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[6]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[7]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[8]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[9]
Zhengkun QIN , Zicong PAN , Hui TIAN , Wanyi ZHANG , Mingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429
-
[10]
Min LIU , Huapeng RUAN , Zhongtao FENG , Xue DONG , Haiyan CUI , Xinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362
-
[11]
Yahui HAN , Jinjin ZHAO , Ning REN , Jianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395
-
[12]
Qiqi Li , Su Zhang , Yuting Jiang , Linna Zhu , Nannan Guo , Jing Zhang , Yutong Li , Tong Wei , Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009
-
[13]
Dongdong Yao , JunweiGu , Yi Yan , Junliang Zhang , Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125
-
[14]
Yanglin Jiang , Mingqing Chen , Min Liang , Yige Yao , Yan Zhang , Peng Wang , Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027
-
[15]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[16]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[17]
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
-
[18]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[19]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
-
[20]
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(951)
- HTML views(197)