Citation: WEI Jun-tao, DING Lu, ZHOU Zhi-jie, YU Guang-suo. In-situ analysis of catalytic gasification reaction characteristics of coal char-CO2 with K2CO3 additive[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(11): 1311-1319. shu

In-situ analysis of catalytic gasification reaction characteristics of coal char-CO2 with K2CO3 additive

  • Corresponding author: YU Guang-suo, 
  • Received Date: 8 May 2015
    Available Online: 13 July 2015

    Fund Project: 国家自然科学基金(21376081) (21376081)国家高技术研究发展计划(863计划,2012AA053101)资助项目 (863计划,2012AA053101)

  • Interactions of catalyst (K2CO3) with Shenfu (SF)/Zunyi (ZY) char during gasification were observed by in-situ heating stage microscope. The effects of gasification temperature (750~950℃) and catalyst loading amount (2.2%, 4.4%, 6.6%) were investigated in a thermogravimetric analyzer. The results show that loading K2CO3 on SF/ZY stimulates development of pore structure in pyrolysis process. The in-situ heating stage experiments indicates that most of the char particles react with CO2 in shrinking core mode below the melting point of K2CO3. Above this temperature, for SF char, obvious molten potassium catalyst diffusion can be observed in the later reaction stage with rapid consumption of carbon skeleton; but for ZY char, most of the molten potassium exists on the surface of coal char with slower consumption of stable carbon skeleton. Gasification reactivity of SF/ZY char increases with increasing loading amount of K2CO3. Catalytic efficiency of potassium catalyst on SF char initially increases and then decreases with gasification temperature, the turning point of gasification temperature is close to the melting point of K2CO3. This may be due to blocking of a fraction of pore structure resulted from the good fluidity of molten potassium catalyst.
  • 加载中
    1. [1]

      [1] 王辅臣, 于广锁, 龚欣, 刘海峰, 王亦飞, 周志杰, 陈雪莉. 大型煤气化技术的研究与发展[J]. 化工进展, 2009, 28(2): 173-180. (WANG Fu-chen, YU Guang-suo, GONG Xin, LIU Hai-feng, WANG Yi-fei, ZHOU Zhi-jie, CHEN Xue-li. Research and development of large-scale coal gasification technology[J]. Chem Ind Eng Prog, 2009, 28(2): 173-180.)

    2. [2]

      [2] 林善俊, 周志杰, 霍威, 丁路, 于广锁. 内扩散对煤和石油焦水蒸气气化反应性能的影响[J]. 燃料化学学报, 2014, 42(8): 905-912. (LIN Shan-jun, ZHOU Zhi-jie, HUO Wei, DING Lu, YU Guang-suo. Effect of internal diffusion on steam gasification reactivity of coal and petroleum coke[J]. J Fuel Chem Technol, 2014, 42(8): 905-912.)

    3. [3]

      [3] YEBOAH Y D, XU Y, SHETH A, GODAVARTY A, AGRAWAL P K. Catalytic gasification of coal using eutectic salts: Identification of eutectics[J]. Carbon, 2003, 41(2): 203-214.

    4. [4]

      [4] SHARMA A, TAKANOHASHI T I, SAITO I. Effect of catalyst addition on gasification reactivitiy of hypercoal and coal with steam at 775~700℃[J]. Fuel, 2008, 87(12): 2686-2690.

    5. [5]

      [5] XU S Q, ZHOU Z J, XIONG J, YU G S, WANG F C. Effect of alkaline metal on coal gasification at pyrolysis and gasification phases[J]. Fuel, 2011,90(5): 1723-1730.

    6. [6]

      [6] KARIMI A, GRAY M R. Effectiveness and mobility of catalysts for gasification of bitumen coke[J]. Fuel, 2011, 90(1): 120-125.

    7. [7]

      [7] WOOD B J, FLEMING R H, WISH H. Reactive intermediate in the alkaline-carbonate-catalysed gasification of coal char[J]. Fuel, 1984, 63(11): 1600-1603.

    8. [8]

      [8] WANG J, SAKANISHI K, SATIO I. High-yield hydrogen production by steam gasification of hypercoal (ash-free coal extract) with potassium carbonate: Comparison with raw coal[J]. Energy Fuels, 2005, 19: 2114-2120.

    9. [9]

      [9] SHARMA A, TAKANOHASHI T, MORISHITA K, TAKARADA T, SAITO I. Low temperature catalytic steam gasification of hypercoal to produce H2 and synthesis gas[J]. Fuel, 2008, 87: 491-497.

    10. [10]

      [10] JIANG M Q, ZHOU R, HU J, WANG F C, WANG J. Calcium-promoted catalytic activity of potassium carbonate for steam gasification of coal char: Influences of calcium species[J]. Fuel, 2012, 99: 64-71.

    11. [11]

      [11] LANG R J, NEAVEL R C. Behaviour of calcium as a steam gasification catalyst[J]. Fuel, 1982, 61: 620-626.

    12. [12]

      [12] YUAN S, CHEN X L, LI J, WANG F C. CO2 gasification kinetics of biomass char derived from high-temperature rapid pyrolysis[J]. Energy Fuels, 2011, 25: 2314-2321.

    13. [13]

      [13] MIURA K, HASHIMOTO K, SILVESTON P L. Factors affecting the reactivity of coal chars during gasification and indices repeating reactivity[J]. Fuel, 1989, 68(11): 1461-1475.

    14. [14]

      [14] DING L, ZHOU Z J, GUO Q H, HUO W, YU G S. Catalytic effects of Na2CO3 additive on coal pyrolysis and gasification[J]. Fuel, 2015, 142: 134-144.

    15. [15]

      [15] 殷宏彦. 碱金属碳酸盐对煤CO2 气化反应性影响的研究[D]. 太原: 太原理工大学, 2010. (DUAN Hong-yan. Study on influence of alkali carbonates to gasification reactivity of coal with CO2[D]. Taiyuan: Taiyuan University of Technology, 2010.)

    16. [16]

      [16] 霍威. 煤等含碳物质热解特性及气化反应特性模型化研究[D]. 上海: 华东理工大学, 2015. (HUO Wei. Researh on pyrolysis characteristics and gasification kinetics modeling of coal and other carbonaceous materials[D]. Shanghai: East China University of Science & Technology, 2015.)

    17. [17]

      [17] 任轶舟, 王亦飞, 朱龙雏, 金渭龙, 王辅臣, 于广锁. 高温煤焦气化反应的Langmuir-Hinshelwood动力学模型[J]. 化工学报, 2014, 65(10): 3906-3915. (REN Yi-zhou, WANG Yi-fei, ZHU Long-chu, JIN Wei-long, WANG Fu-chen, YU Guang-suo. Langmuir-Hinshelwood kinetic model of high temperature coal char gasification reaction[J]. CIESC J, 2014, 65(10): 3906-3915.)

    18. [18]

      [18] DING L, ZHOU Z J, HUO W, WANG Y F, YU G S. In situ heating stage analysis of fusion and catalytic effects of a Na2CO3 additive on coal char particle gasification[J]. Ind Eng Chem Res, 2014, 53: 19159-19167.

  • 加载中
    1. [1]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    2. [2]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    3. [3]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    4. [4]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    5. [5]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    8. [8]

      Changyan Sun Hualei Zhou Bin Dong . Application of “PBL” Teaching Mode in Inorganic Chemistry Experimental Education in the Perspective of Course Ideology and Politics: Taking Preparation of Manganese Carbonate as an Example. University Chemistry, 2024, 39(11): 378-383. doi: 10.12461/PKU.DXHX202402016

    9. [9]

      Yu Peng Jiawei Chen Yue Yin Yongjie Cao Mochou Liao Congxiao Wang Xiaoli Dong Yongyao Xia . 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-. doi: 10.1016/j.actphy.2025.100087

    10. [10]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    11. [11]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    15. [15]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    16. [16]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    17. [17]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    18. [18]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    19. [19]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    20. [20]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

Metrics
  • PDF Downloads(0)
  • Abstract views(421)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return