Citation: XU Rong-sheng, WANG Yong-gang, LIN Xiong-chao, YANG Sa-sha, AI Sha-jiang, YANG Yuan-ping. Mineralogical properties of lowering coal ash melting temperature using blending coal and fluxing agent[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(11): 1303-1310. shu

Mineralogical properties of lowering coal ash melting temperature using blending coal and fluxing agent

  • Corresponding author: WANG Yong-gang, 
  • Received Date: 30 April 2015
    Available Online: 30 June 2015

    Fund Project: 国家自然科学基金(21406261) (21406261)"十二五冶国家科技支撑计划重点项目(2012BAA04B02)资助 (2012BAA04B02)

  • In order to understand the slagging properties of blended coal, different coal blending and flux agent were added to Jincheng anthracites. The X-ray diffraction (XRD), thermodynamic software FactSage and ash fusion temperature (AFT) test were employed to analyze the ash fusion characteristics of blended coals and the mineralogical properties of the blended coal ashes. The results show that the content of ash in coal has an important role in the AFT change of blended coals. The lower the ash contained in raw coal is, the easier the AFT of blended coal lowers. The addition ratio of coal blending is 20% and 30% when the AFT decreases significantly for coal C with low ash content and G with high ash content, respectively. There is more significant fluxing effect of K on C than that on G. It is found that the feldspar mineral is formed at the deformation temperature. The decreasing in contents of mullite as well as the appreciably increasing for feldspar is the main reason for the decreasing of AFT. The thermodynamic analyses indicate that the producing of liquid matter is related to the rapidly decreasing in the contents of anorthite and quartz, as well as slowly decreasing for mullite at high temperature. The anorthite takes part in the formation of liquid matter. The fluxing effect of anorthite depends on the contents of matter which can react with anorthite to produce a melt with lower fusion point.
  • 加载中
    1. [1]

      [1] 张龙, 黄振宇, 沈铭科, 王智化, 周俊虎. 不同的灰熔点调控方式对煤灰熔融特性的影响[J].燃料化学学报, 2015, 43(2): 145-152. (ZHANG Long, HUANG Zhen-yu, SHEN Ming-ke, WANG Zhi-hua, ZHOU Jun-hu. Effect of different regulative methods on coal ash fusion characteristics[J]. J Fuel Chem Technol, 2015, 43(2): 145-152.)

    2. [2]

      [2] BENSON S A, SONDREAL E A, HURLEY J P. Status of coal ash behavior research[J]. Fuel Process Technol, 1995, 44: 1-12.

    3. [3]

      [3] COLLOT A G. Matching gasification technologies to coal properties[J]. Int J Coal Geol, 2001, 65:191-212.

    4. [4]

      [4] VAN DYK J C, KEYSER M J, VAN ZYL J W. Suitability of feedstocks for the sasol-lurgi fixed bed dry bottom gasification process[C]. Gasification technologies 2001, san Francisco, California, 2001: 1-11.

    5. [5]

      [5] 陈鹏. 中国煤炭性质、 分类和利用[J]. 北京: 化学工业出版社, 2001. (CHEN Peng. The characteristics, classification and utilizing of Chinese coal[M]. Beijing: Chemical Industry Press, 2001.)

    6. [6]

      [6] VAN DYK J C, MELZER S, SOBIECKI A. Mineral matter transformation during Sasol-Lurgi fixed bed dry bottom gasification- utilization of HT- XRD and FactSage modeling[J]. Miner Eng, 2006, 19: 1126-1135.

    7. [7]

      [7] MATJIE R H, VAN ALPHEN C, PISTORIUS P C. Mineralogical characterization of secunda gasifier feedstock and coarse ash[J]. Miner Eng, 2006, 19: 256-261.

    8. [8]

      [8] MANGENA S J, BUNT J R, WAANDERS F B. Physical property behavior of North Dakota lignite in an oxygen/steam blown moving bed gasifier[J]. Fuel Process Technol, 2013, 106: 326-331.

    9. [9]

      [9] 芦涛, 张雷, 张晔, 丰芸, 李寒旭. 煤中矿物质组成对煤灰熔融温度的影响[J]. 燃料化学学报, 2010, 38(1): 23-28. (LU Tao, ZHANG Lei, ZHANG Ye, FENG Yun, LI Han-xu. Effect of mineral composition on coal ash fusion temperature[J]. J Fuel Chem Technol, 2010, 38(1): 23-28.)

    10. [10]

      [10] VASSILEV S V, KITANO K, TAKEDA S, TSURUE T. Influence of mineral and chemical composition of coal ashes on the fusibility[J]. Fuel Process Technol, 1995, 45: 27-51.

    11. [11]

      [11] 陈凡敏, 王嘉瑞, 赵冰, 李小江, 覃涛. 煤中矿物质对灰熔融和燃烧特性的影响[J]. 燃料化学学报2015, 43(1): 27-33. (CHEN Fan-min, WANG Jia-rui, ZHAO Bing, LI Xiao-jiang, QIN Tao. Effect of mineral form in coal on combustion characteristics and fusibility of coal ash[J]. J Fuel Chem Technol, 2015, 43(1): 27-33.)

    12. [12]

      [12] SU S, POHL J H, HOLCOMBE D, HART J A. Slagging propensities of blended coals[J]. Fuel, 2001, 80: 1351-1360.

    13. [13]

      [13] ZHAO Y C, ZHANG J Y, SHAO X Y, ZHENG C G. A new method for ash melting thermo-analysis based on mineral quantity[J]. Chin Sci Bull, 2011, 56(10): 1043-1047.

    14. [14]

      [14] QIU J R, LI F, ZHENG C G. Mineral transformation during combustion of coal blends[J]. Int J Energy Res, 1999, 23: 453-463.

    15. [15]

      [15] RUSHDI A, SHARMA A, GUPTA R. An experimental study of the effect of coal blending on deposition[J]. Fuel, 2004, 83: 495-506.

    16. [16]

      [16] 王大川, 梁钦锋, 龚欣, 刘海峰, 刘霞. 添加助熔剂后朱集西煤灰熔融特性规律研究[J]. 燃料化学学报, 2015, 43(2): 153-159. (WANG Da-chuan, LIANG Qin-feng, GONG Xin, LIU Hai-feng, LIU Xia. Fusion properties of zhujixi washed coal ash adding fluxes[J]. J Fuel Chem Technol, 2015, 43(2): 153-159.)

  • 加载中
    1. [1]

      Wanchun Zhu Yongmei Liu Li Wang Yunshan Bai Shu'e Song Xiaokui Wang Zhongyun Wu Hong Yuan Yunchao Li Fuping Tian Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028

    2. [2]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    3. [3]

      Meiyu Lin Yuxin Fang Songzhang Shen Yaqian Duan Wenyi Liang Chi Zhang Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042

    4. [4]

      Dongmei Xu . The Twists and Turns of Hair Metamorphosis. University Chemistry, 2024, 39(9): 81-84. doi: 10.12461/PKU.DXHX202403062

    5. [5]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    6. [6]

      Weitai Wu Laiying Zhang Yuan Chun Liang Qiao Bin Ren . Course Design of Chemical Measurement Experiments in Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 64-68. doi: 10.12461/PKU.DXHX202409031

    7. [7]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    8. [8]

      Laiying Zhang Weitai Wu Yiru Wang Shunliu Deng Zhaobin Chen Jiajia Chen Bin Ren . Practices for Improving the Course of Chemical Measurement Experiments in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 107-112. doi: 10.12461/PKU.DXHX202409032

    9. [9]

      Houjin Li Lin Wu Xingwen Sun Yuan Zheng Zhanxiang Liu Shuanglian Cai Ying Xiong Guangao Yu Qingwen Liu Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Organic Chemical Chromatography Experiments. University Chemistry, 2025, 40(5): 93-105. doi: 10.12461/PKU.DXHX202408100

    10. [10]

      Yi-Lin Xie Jian-Ji Zhong Qing-Xiao Tong Jing-Xin Jian . Exploring “Magic Teaching” as a Means to Integrate Organic Chemistry Experiments with the “Industry-University-Research” Model. University Chemistry, 2025, 40(5): 252-260. doi: 10.12461/PKU.DXHX202407024

    11. [11]

      Tiancheng Yang Yang Yang Chunhua Qu Rui Chu Yue Xia . Wandering through the Kingdom of Chinese Mineral Medicines. University Chemistry, 2024, 39(9): 94-101. doi: 10.12461/PKU.DXHX202403015

    12. [12]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    13. [13]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    14. [14]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    15. [15]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    16. [16]

      Yan Su Xiuyun Wang Huimin Guo Yanjuan Zhang Xinwen Zhang Yunting Shang Wenfeng Jiang . To Cultivate Scientific Literacy by Learning, Thinking, Practicing and Understanding, To Utilize the “Smart Eye” Expertise by Integrating of Knowledge and Action: Ideological and Political Construction of Analytical Chemistry Experiment Course. University Chemistry, 2024, 39(2): 196-202. doi: 10.3866/PKU.DXHX202308003

    17. [17]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

    18. [18]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    19. [19]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    20. [20]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

Metrics
  • PDF Downloads(0)
  • Abstract views(334)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return