Citation:
YANG Qun, CHANG Hai-zhou, DU Shuai, ZHAO Yue-feng, WANG Lu, YU Zhi-hao. Pyrolysis interaction between vitrinite and inertinite from Chinese Wucaiwan coal[J]. Journal of Fuel Chemistry and Technology,
;2015, 43(11): 1295-1302.
-
Two different systems for vitrinite and inertinite from Wucaiwan coal were established:no interaction (A) and interaction system (B). Thermogravimetric (TG) and fouriertransform infrared (FT-IR) were used to analyze the pyrolysis products in the two systems. The results show that at 300~450℃ the hydrogen content of B is higher than that of system A, indicating that the reaction of alkyl radical transfer between the vitrinite and inertinite. Meanwhile, the aromatic hydrogen of system B is more than that of system A, which shows that aromatization between vitrinite and inertinite occurs, and a few hydrogen free radicals produced from vitrinite occur macromolecular aromatic structure side chain substitution reaction with inertinite. From 500 to 700℃, the aliphatic and aromatic hydrogen content of system B is lower than that of system A, showing that polycondensation reaction and condensation reaction exist between the vitrinite and inertinite. From 750 to 800℃, aromatic aliphatic hydrogen content of system B is greater than that of system A, which means that vitrinite generates more hydrogen free radicals and occur hydrogenation reaction with inertinite macromolecular aromatic structure as well as side chain substitution reaction with inertinite in system B; From 850 to 900℃, polycyclic aromatic condensation reaction proceeds further between vitrinite and inertinite.
-
Keywords:
- pyrolysis,
- vitrinite,
- inertinite,
- interaction,
- FT-IR
-
-
-
[1]
[1] XIE K, ZHANG Y, LI C, LING D. Pyrolysis characteristics of macerals separated from asingle coal and their artificial mixture[J]. Fuel, 1991, 70(3): 474-479.
-
[2]
[2] WANG J, DU J, CHANG L, XIE K C. Study on the structure and pyrolysischaracteristics of Chinese western coals[J]. Fuel Process Technol, 2010, 91(4): 430-433.
-
[3]
[3] OZTAS N A, YURUM Y. Pyrolysis of TurkishZonguldak bituminous coal. Part 1. Effect of mineral matter[J]. Fuel, 2000, 79(10): 1221-1227.
-
[4]
[4] SAFAROVA M, KUSY J, ANDEL L. Pyrolysis of brown coal under different process conditions[J]. Fuel, 2005, 84(17): 2280-2285.
-
[5]
[5] ZHAO Y, HU H, JIN, HE X, WU B. Pyrolysis behavior of vitrinite and inertinite from Chinese Pingshuo coal by TG-MS and in a fixed bed reactor[J]. Fuel Process Technol, 2011, 92(4): 780-786.
-
[6]
[6] 谢克昌. 煤的结构与反应性[M]. 北京: 科学出版社, 2002. (XIE Ke-chang. Coal structure and its reactivity[M]. Beijing: Science Press, 2002.)
-
[7]
[7] SUN Q L, LI W, LI B Q. The synergistic effect between macerals during pyrolysis[J]. Fuel, 2002, 81(7): 973-974.
-
[8]
[8] 孙庆雷, 李文, 李保庆. 神木煤热解的挥发分收率与岩相组成的关系[J]. 化工学报, 2003, 54(2): 269-272. (SUN Qing-lei, LI Wen, LI Bao-qing. Relationship between volatile yield and petrographic analysis during pyrolysis of Shenmu macerals[J]. Chem Ind Eng (China), 2003, 54(2): 269-272.)
-
[9]
[9] 李文华. 东胜-神府煤的煤质特征与转化特性(兼论中国动方媒的岩相特征)[D]. 北京: 煤炭科学研究总院, 2001. (LI Wen-hua. Characteristics and conversion behavior of Donsheng-Shenfu coal (Petrographical Characteristics of Chinese steam coal)[D]. Beijing: CCRI, 2001.)
-
[10]
[10] 何秀风, 陈小利, 杜娟, 常丽萍. 宁夏原煤及其显微组分热解过程中气相产物生成的研究[J]. 煤化工, 2009, 2: 25-27. (HE Xiu-feng, CHEN Xiao-li, DU Juan, CHANG Li-ping. Study on the gaseous products generated during pyrolysis of ningxia raw coal and its macerals[J]. Coal Chem Ind, 2009, 2: 25-27.)
-
[11]
[11] DUXBURY J. Prediction of coal pyrolysis yields from BS volatile matter and petrographic analysis[J]. Fuel, 1997, 76(13): 1337-1343.
-
[12]
[12] AHMED M A, BLESA M J, JUAN R, VANDENBERGHE R E.Characterisation of an Egyptian coal by Mossbauer and FT-IR spectroscopy[J]. Fuel, 2003, 82(14): 1825-1829.
-
[13]
[13] GENG W H, NAKAJIMA T, TAKANASHI H, OHKI A. Analysis of carboxyl group in coal and coal aromaticity by Fourier transform infrared (FT-IR) spectrometry[J]. Fuel, 2009, 88(1): 139-144.
-
[14]
[14] SONIBARE O O, HAEGER T, FOLEY S F. Structural characterization of Nigerian coals by X-ray diffraction, Raman and FT-IR spectroscopy[J]. Energy, 2010, 35(12): 5347-5353.
-
[15]
[15] ALESSIO A D, VERGAMINI P, BENEDETTI E. FT-IR investigation of the structural changes of Sulcis and South Africa coals under progressive heating in vacuum[J]. Fuel, 2000, 79(10): 1215-1220.
-
[16]
[16] ZHUO Y, LEMAIGNEN L, CHATZAKIS I N, REED G P, DUGWELL D R, KANDIYOTI R. An attempt to correlate conversions in pyrolysis and gasification with FT-IR spectra of coals[J]. Energy Fuels, 2000, 14(5): 1049-1058.
-
[17]
[17] JAMES C H, ISABEL S, MARIA M, ALAN C C. The investigation of chemical structure of coal macerals via transmitted-light FT-IR microscopy by X. Sun.[J]. Spectrochim Acta, Part A, 2007, 67(5): 1433-1437.
-
[18]
[18] 常海洲, 王传格, 曾凡桂, 李军, 李文英, 谢克昌. 不同还原程度煤显微组分组表面结构XPS对比分析[J]. 燃料化学学报, 2006, 34(3): 389-392. (CHANG Hai-zhou, WANG Chuan-ge, ZENG Fan-gui, LI Jun, LI Wen-ying, XIE Ke-chang. XPS comparativeanalysis of coal macerals with different reducibility[J]. J Fuel Chem Technol, 2006, 34(3): 389-392.)
-
[19]
[19] 彭立才, 韩德馨, 邵文斌, 刘青文. 柴达木盆地北缘侏罗系烃源岩干酪根 13C核磁共振研究[J]. 石油学报, 2002, 23(2): 34-37. (PENG Li-cai, HAN De-xin, SHAO Wen-bin, LIU Qing-wen. 13C NMR research on the kerogens of Jurassic hydrocabon source rock in the northen edge, Qaidam basin[J]. Acta Pet Sin, 2002, 23(2): 34-37.)
-
[20]
[20] 郑昀辉, 戴中蜀. 用NMR研究低温热处理对低煤化度煤化学组成结构的影响[J]. 煤炭转化, 1997, 20(4): 54-59. (ZHENG Yun-hui, DAI Zhong-shu.Using NMR to research the influence of low temperature pyrolysis on the chemical component and structure of low rank coal[J]. Coal Conv, 1997, 20(4): 54-59.)
-
[21]
[21] TREWHELLA M T, POPLETT L J F, GRINT A. Structure of Green River oil shale kerogen determination using solid state 13C-NMR spectroscopy[J]. Fuel, 1986, 65(4): 541-546.
-
[22]
[22] 罗陨飞, 李文华, 陈亚飞. 中低变质程度煤显微组分结构的 13C-NMR研究[J]. 燃料化学学报, 2005, 33(5): 540-543. (LUO Yun-fei, LI Wen-hua, CHEN Ya-fei. 13 C- NMR analysis on different macerals of several low- to- medium rank coals[J]. J Fuel Chem Technol, 2005, 33(5): 540-543.)
-
[23]
[23] JOSE V I, EDGAR M, RAFAEL M. FT-IR study of the evolution of coalstructure during the coalification process[J]. Org Geochem, 1996, 6(24): 725-735.
-
[1]
-
-
-
[1]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[2]
Yuxin CHEN , Yanni LING , Yuqing YAO , Keyi WANG , Linna LI , Xin ZHANG , Qin WANG , Hongdao LI , Wenmin WANG . Construction, structures, and interaction with DNA of two SmⅢ4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258
-
[3]
Jiaxun Wu , Mingde Li , Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098
-
[4]
Huiying Xu , Minghui Liang , Zhi Zhou , Hui Gao , Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011
-
[5]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Liu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004
-
[6]
Yujing Chen , Hongqun Ouyang , Dan Zhao , Yanyan Chu , Zhengping Qiao . Recommendations for the Content and Instruction of the Physical Chemistry Experiment “Construction of Ternary Liquid-Liquid Phase Diagrams”. University Chemistry, 2025, 40(7): 359-366. doi: 10.12461/PKU.DXHX202409120
-
[7]
Hanmei Lü , Xin Chen , Qifu Sun , Ning Zhao , Xiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016
-
[8]
Jia Huo , Jia Li , Yongjun Li , Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075
-
[9]
Xianyong Lu , Tao Hu . Developing an Innovative Inorganic Chemistry Teaching Model Based on Aerospace Specialty Characteristics. University Chemistry, 2025, 40(7): 127-131. doi: 10.12461/PKU.DXHX202409037
-
[10]
Xinran Zhang , Siqi Liu , Yichi Chen , Qingli Zou , Qinghong Xu , Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104
-
[11]
Jiandong Liu , Zhijia Zhang , Kamenskii Mikhail , Volkov Filipp , Eliseeva Svetlana , Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048
-
[12]
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
-
[13]
Changsheng An , Tao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101
-
[14]
Zhi Dou , Huiyu Duan , Yixi Lin , Yinghui Xia , Mingbo Zheng , Zhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039
-
[15]
Ke Qiu , Fengmei Wang , Mochou Liao , Kerun Zhu , Jiawei Chen , Wei Zhang , Yongyao Xia , Xiaoli Dong , Fei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036
-
[16]
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
-
[17]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[18]
Yu Peng , Jiawei Chen , Yue Yin , Yongjie Cao , Mochou Liao , Congxiao Wang , Xiaoli Dong , Yongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087
-
[19]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019
-
[20]
Da Wang , Xiaobin Yin , Jianfang Wu , Yaqiao Luo , Siqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(854)
- HTML views(93)