Citation: YANG Qun, CHANG Hai-zhou, DU Shuai, ZHAO Yue-feng, WANG Lu, YU Zhi-hao. Pyrolysis interaction between vitrinite and inertinite from Chinese Wucaiwan coal[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(11): 1295-1302. shu

Pyrolysis interaction between vitrinite and inertinite from Chinese Wucaiwan coal

  • Corresponding author: CHANG Hai-zhou, 
  • Received Date: 9 June 2015
    Available Online: 14 September 2015

    Fund Project: 国家自然科学基金(21276156)资助项目 (21276156)

  • Two different systems for vitrinite and inertinite from Wucaiwan coal were established:no interaction (A) and interaction system (B). Thermogravimetric (TG) and fouriertransform infrared (FT-IR) were used to analyze the pyrolysis products in the two systems. The results show that at 300~450℃ the hydrogen content of B is higher than that of system A, indicating that the reaction of alkyl radical transfer between the vitrinite and inertinite. Meanwhile, the aromatic hydrogen of system B is more than that of system A, which shows that aromatization between vitrinite and inertinite occurs, and a few hydrogen free radicals produced from vitrinite occur macromolecular aromatic structure side chain substitution reaction with inertinite. From 500 to 700℃, the aliphatic and aromatic hydrogen content of system B is lower than that of system A, showing that polycondensation reaction and condensation reaction exist between the vitrinite and inertinite. From 750 to 800℃, aromatic aliphatic hydrogen content of system B is greater than that of system A, which means that vitrinite generates more hydrogen free radicals and occur hydrogenation reaction with inertinite macromolecular aromatic structure as well as side chain substitution reaction with inertinite in system B; From 850 to 900℃, polycyclic aromatic condensation reaction proceeds further between vitrinite and inertinite.
  • 加载中
    1. [1]

      [1] XIE K, ZHANG Y, LI C, LING D. Pyrolysis characteristics of macerals separated from asingle coal and their artificial mixture[J]. Fuel, 1991, 70(3): 474-479.

    2. [2]

      [2] WANG J, DU J, CHANG L, XIE K C. Study on the structure and pyrolysischaracteristics of Chinese western coals[J]. Fuel Process Technol, 2010, 91(4): 430-433.

    3. [3]

      [3] OZTAS N A, YURUM Y. Pyrolysis of TurkishZonguldak bituminous coal. Part 1. Effect of mineral matter[J]. Fuel, 2000, 79(10): 1221-1227.

    4. [4]

      [4] SAFAROVA M, KUSY J, ANDEL L. Pyrolysis of brown coal under different process conditions[J]. Fuel, 2005, 84(17): 2280-2285.

    5. [5]

      [5] ZHAO Y, HU H, JIN, HE X, WU B. Pyrolysis behavior of vitrinite and inertinite from Chinese Pingshuo coal by TG-MS and in a fixed bed reactor[J]. Fuel Process Technol, 2011, 92(4): 780-786.

    6. [6]

      [6] 谢克昌. 煤的结构与反应性[M]. 北京: 科学出版社, 2002. (XIE Ke-chang. Coal structure and its reactivity[M]. Beijing: Science Press, 2002.)

    7. [7]

      [7] SUN Q L, LI W, LI B Q. The synergistic effect between macerals during pyrolysis[J]. Fuel, 2002, 81(7): 973-974.

    8. [8]

      [8] 孙庆雷, 李文, 李保庆. 神木煤热解的挥发分收率与岩相组成的关系[J]. 化工学报, 2003, 54(2): 269-272. (SUN Qing-lei, LI Wen, LI Bao-qing. Relationship between volatile yield and petrographic analysis during pyrolysis of Shenmu macerals[J]. Chem Ind Eng (China), 2003, 54(2): 269-272.)

    9. [9]

      [9] 李文华. 东胜-神府煤的煤质特征与转化特性(兼论中国动方媒的岩相特征)[D]. 北京: 煤炭科学研究总院, 2001. (LI Wen-hua. Characteristics and conversion behavior of Donsheng-Shenfu coal (Petrographical Characteristics of Chinese steam coal)[D]. Beijing: CCRI, 2001.)

    10. [10]

      [10] 何秀风, 陈小利, 杜娟, 常丽萍. 宁夏原煤及其显微组分热解过程中气相产物生成的研究[J]. 煤化工, 2009, 2: 25-27. (HE Xiu-feng, CHEN Xiao-li, DU Juan, CHANG Li-ping. Study on the gaseous products generated during pyrolysis of ningxia raw coal and its macerals[J]. Coal Chem Ind, 2009, 2: 25-27.)

    11. [11]

      [11] DUXBURY J. Prediction of coal pyrolysis yields from BS volatile matter and petrographic analysis[J]. Fuel, 1997, 76(13): 1337-1343.

    12. [12]

      [12] AHMED M A, BLESA M J, JUAN R, VANDENBERGHE R E.Characterisation of an Egyptian coal by Mossbauer and FT-IR spectroscopy[J]. Fuel, 2003, 82(14): 1825-1829.

    13. [13]

      [13] GENG W H, NAKAJIMA T, TAKANASHI H, OHKI A. Analysis of carboxyl group in coal and coal aromaticity by Fourier transform infrared (FT-IR) spectrometry[J]. Fuel, 2009, 88(1): 139-144.

    14. [14]

      [14] SONIBARE O O, HAEGER T, FOLEY S F. Structural characterization of Nigerian coals by X-ray diffraction, Raman and FT-IR spectroscopy[J]. Energy, 2010, 35(12): 5347-5353.

    15. [15]

      [15] ALESSIO A D, VERGAMINI P, BENEDETTI E. FT-IR investigation of the structural changes of Sulcis and South Africa coals under progressive heating in vacuum[J]. Fuel, 2000, 79(10): 1215-1220.

    16. [16]

      [16] ZHUO Y, LEMAIGNEN L, CHATZAKIS I N, REED G P, DUGWELL D R, KANDIYOTI R. An attempt to correlate conversions in pyrolysis and gasification with FT-IR spectra of coals[J]. Energy Fuels, 2000, 14(5): 1049-1058.

    17. [17]

      [17] JAMES C H, ISABEL S, MARIA M, ALAN C C. The investigation of chemical structure of coal macerals via transmitted-light FT-IR microscopy by X. Sun.[J]. Spectrochim Acta, Part A, 2007, 67(5): 1433-1437.

    18. [18]

      [18] 常海洲, 王传格, 曾凡桂, 李军, 李文英, 谢克昌. 不同还原程度煤显微组分组表面结构XPS对比分析[J]. 燃料化学学报, 2006, 34(3): 389-392. (CHANG Hai-zhou, WANG Chuan-ge, ZENG Fan-gui, LI Jun, LI Wen-ying, XIE Ke-chang. XPS comparativeanalysis of coal macerals with different reducibility[J]. J Fuel Chem Technol, 2006, 34(3): 389-392.)

    19. [19]

      [19] 彭立才, 韩德馨, 邵文斌, 刘青文. 柴达木盆地北缘侏罗系烃源岩干酪根 13C核磁共振研究[J]. 石油学报, 2002, 23(2): 34-37. (PENG Li-cai, HAN De-xin, SHAO Wen-bin, LIU Qing-wen. 13C NMR research on the kerogens of Jurassic hydrocabon source rock in the northen edge, Qaidam basin[J]. Acta Pet Sin, 2002, 23(2): 34-37.)

    20. [20]

      [20] 郑昀辉, 戴中蜀. 用NMR研究低温热处理对低煤化度煤化学组成结构的影响[J]. 煤炭转化, 1997, 20(4): 54-59. (ZHENG Yun-hui, DAI Zhong-shu.Using NMR to research the influence of low temperature pyrolysis on the chemical component and structure of low rank coal[J]. Coal Conv, 1997, 20(4): 54-59.)

    21. [21]

      [21] TREWHELLA M T, POPLETT L J F, GRINT A. Structure of Green River oil shale kerogen determination using solid state 13C-NMR spectroscopy[J]. Fuel, 1986, 65(4): 541-546.

    22. [22]

      [22] 罗陨飞, 李文华, 陈亚飞. 中低变质程度煤显微组分结构的 13C-NMR研究[J]. 燃料化学学报, 2005, 33(5): 540-543. (LUO Yun-fei, LI Wen-hua, CHEN Ya-fei. 13 C- NMR analysis on different macerals of several low- to- medium rank coals[J]. J Fuel Chem Technol, 2005, 33(5): 540-543.)

    23. [23]

      [23] JOSE V I, EDGAR M, RAFAEL M. FT-IR study of the evolution of coalstructure during the coalification process[J]. Org Geochem, 1996, 6(24): 725-735.

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    3. [3]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    4. [4]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    5. [5]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    6. [6]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    7. [7]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    8. [8]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    9. [9]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    10. [10]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    11. [11]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    12. [12]

      Yu Peng Jiawei Chen Yue Yin Yongjie Cao Mochou Liao Congxiao Wang Xiaoli Dong Yongyao Xia . 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-. doi: 10.1016/j.actphy.2025.100087

    13. [13]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    16. [16]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    17. [17]

      Chaozheng HeMenghui XiChenxu ZhaoRan WangLing FuJinrong Huo . Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces. Chinese Chemical Letters, 2025, 36(3): 109671-. doi: 10.1016/j.cclet.2024.109671

    18. [18]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    19. [19]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    20. [20]

      A-Yang WangSheng-Hua ZhouMao-Yin RanXin-Tao WuHua LinQi-Long Zhu . Regulating the key performance parameters for Hg-based IR NLO chalcogenides via bandgap engineering strategy. Chinese Chemical Letters, 2024, 35(10): 109377-. doi: 10.1016/j.cclet.2023.109377

Metrics
  • PDF Downloads(0)
  • Abstract views(823)
  • HTML views(91)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return