Citation:
CUI Tong-min, LI Chao, ZHOU Zhi-jie, CHANG Qing-hua, GAO Rui, YU Guang-suo, WANG Fu-chen. Rapid pyrolysis characteristic of Shenfu bituminous coal[J]. Journal of Fuel Chemistry and Technology,
;2015, 43(11): 1287-1294.
-
A high-frequency furnace was utilized to carry out rapid pyrolysis of Shenfu coal. The effect of temperature and residence time on the properties of solid and gas products was studied. The results show that the mass loss and true density of the char increase with increasing of both temperature and time. The analysis of their infrared spectra indicates that the hydrogen/oxygen functional groups decompose to form H2, CO, CO2, CH4 and other gases during pyrolysis, and the decomposition increase with increasing temperature and time. The emission of H2 and CO monotonically increases, however there are emission peaks for CO2 and CH4. The total gas products increase with temperature and time, leading to the pores and cracks on the char after high temperature pyrolysis.
-
Keywords:
- rapid pyrolysis,
- true density,
- functional group,
- release of gas
-
-
-
[1]
[1] 于广锁, 牛苗任, 王亦飞, 梁钦锋, 于遵宏. 气流床煤气化的技术现状和发展趋势[J]. 现代化工, 2004, 24(5): 23-26. (YU Guang-suo, NIU Miao-ren, WANG Yi-fei, LIANG Qin-feng, YU Zun-hong. Application status and development tendency of coal entrained-bed gasification[J]. Mod Chem Ind, 2004, 24(5): 23-26.)
-
[2]
[2] HEEK K H, HODEK W. Structure and pyrolysis behavior of different coals and relevant model substances[J]. Fuel, 1994, 73(6): 886-896.
-
[3]
[3] 王杰, 颜涌捷, 薛为岚, 陈林, 王劲. 神府烟煤和黄天棉褐煤的快速热解[J]. 华东化工学院学报, 1993, 19(4): 432-436. (WANG Jie, YAN Yong-jie, XUE Wei-lan, CHEN Lin, WANG Jin. Rapid pyrolysis of Shenfu bituminous coal and Huangtianmian lignite[J]. J East China Int Chem Technol, 1993, 19(4): 432-436.)
-
[4]
[4] YEASMIN H, MATHEWS J, OUYANG S. Rapid devolatilisation of Yallourn brown coal at high pressures and temperatures[J]. Fuel, 1999, 78(1): 11-24.
-
[5]
[5] NELSON P, SMITH I, TYLER R. Pyrolysis of coal at high temperatures[J]. Fuel, 1988, 2(4): 391-400.
-
[6]
[6] KOBAYASHI H, HOWARD J B, SAROFIM A F. Coal devolatilization at high temperature[C]. Symposium (International) on Combustion, 1977, 16(1): 411-425.
-
[7]
[7] 刘铁峰, 房倚天, 王洋. 煤高温快速热解规律研究[J]. 燃料化学学报, 2009, 37(1): 20-25. (LIU Tie-feng, FANG Yi-tian, WANG yang. Rapid pyrolysis of coal at high temperature[J]. J Fuel Chem Technol, 2009, 37(1): 20-25.)
-
[8]
[8] 陈路, 周志杰, 刘鑫, 袁帅, 王辅臣. 煤快速热解焦的微观结构对其气化活性的影响[J]. 燃料化学学报, 2012, 40(6): 648-654. (CHEN Lu, ZHOU Zhi-jie, LIU Xin, YUAN Shuai, WANG Fu-chen. Effect of microstructure of rapid pyrolysis char on its gasification reactivity[J]. J Fuel Chem Technol, 2012, 40(6): 648-654.)
-
[9]
[9] 吴磊, 周志杰, 王兴军, 于广锁, 王辅臣. 神府烟煤水煤浆快速热解焦结构演化及其反应性的研究[J]. 燃料化学学报, 2013, 41(4): 422-429. (WU Lei, ZHOU Zhi-jie, WANG Xing-jun, YU Guang-suo, WANG Fu-chen. Structure changes and gasification reactivity of CWS char from Shenfu coal rapid pyrolysis[J]. J Fuel Chem Technol, 2013, 41(4): 422-429.)
-
[10]
[10] SOLOMON P R, SERIO M A, CARANGELO R M, MARKHAM J R. Very rapid coal pyrolysis[J]. Fuel, 1986, 65(2): 1182-1194.
-
[11]
[11] 吴诗勇, 顾菁, 李莉, 吴幼青, 高晋生. 高温下快速和慢速热解神府煤焦的理化性质[J]. 煤炭学报, 2006, 31(4): 492-496. (WU Shi-yong, GU Jing, LI Li, WU You-qing, GAO Jin-sheng. Physical and chemical properties of slow and rapid heating chars at elevated temperatures[J]. J China Coal Soc, 2006, 31(4): 492-496.)
-
[12]
[12] SOLOMON P R, HAMBLEN D G, CARANGELO R M. General model of coal devolatilization[J]. Energy Fuels, 1988, 2(4): 405-422.
-
[13]
[13] SOLOMON P R, HAMBLEN D G, CARANGELO R M. Analysis of the argonne premium coal samples by thermogravimetric fourier transform infrared spectroscopy[J]. Energy Fuels, 1990, 4(3): 319-333.
-
[14]
[14] FU W, ZHANG Y, HAN H. A general model of pulverized devolatilization[J]. Fuel, 1989, 68(4): 505-510.
-
[15]
[15] ANDREW O O. Oualitative and quantitative ATR-FTIR analysis and its application to coal char of different ranks[J]. J Fuel Chem Technol, 2015, 43(2): 129-137.
-
[16]
[16] ZHOU C, LIU G, YAN Z, FANG T, WANG R. Transformation behavior of mineral composition and trace elements during coal gangue combustion[J]. Fuel, 2012, 97: 644-650.
-
[17]
[17] 谢克昌. 煤的结构与反应性[M]. 北京: 科学出版社, 2002. (XIE Ke-chang. Coal structure and its reactivity[M]. Beijing: Science Press, 2002.)
-
[18]
[18] 王继仁, 金智新, 邓存宝. 煤自燃量子化学理论[M]. 北京: 科学出版社, 2007. (WANG Ji-ren, JIN Zhi-xin, DENG Cun-bao. Quantum chemistry theory of coal spontaneous combustion[M]. Beijing: Science Press, 2007.)
-
[19]
[19] 翁诗甫. 傅里叶变换红外光谱分析[M]. 2版. 北京: 化学工业出版社, 2010. (WENG Shi-fu. Analysis of FT-infrared spectroscopy[M]. 2nd ed. Beijing: Chemical Industry Press, 2010.)
-
[20]
[20] COOKE N E, FULLER O M, GAIKWAD R P. FT-i.r. spectroscopic analysis of coal and coal extracts[J]. Fuel, 1986, 65(9): 1254-1260.
-
[1]
-
-
-
[1]
Xinyu Zhu , Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106
-
[2]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[3]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[4]
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
-
[5]
Jiali CHEN , Guoxiang ZHAO , Yayu YAN , Wanting XIA , Qiaohong LI , Jian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408
-
[6]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[7]
Shu'e Song , Xiaokui Wang , Yongmei Liu , Wanchun Zhu , Hong Yuan , Fuping Tian , Yunshan Bai , Yunchao Li , Li Wang , Zhongyun Wu , Yuan Chun , Jianrong Zhang , Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Viscosity, Density and Optical Properties. University Chemistry, 2025, 40(5): 148-156. doi: 10.12461/PKU.DXHX202503026
-
[8]
Di Yang , Jiayi Wei , Hong Zhai , Xin Wang , Taiming Sun , Haole Song , Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023
-
[9]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[10]
Qiqi Li , Su Zhang , Yuting Jiang , Linna Zhu , Nannan Guo , Jing Zhang , Yutong Li , Tong Wei , Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009
-
[11]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[12]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[13]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[14]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[15]
Min Gu , Huiwen Xiong , Liling Liu , Jilie Kong , Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120
-
[16]
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
-
[17]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[18]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
-
[19]
Fugui XI , Du LI , Zhourui YAN , Hui WANG , Junyu XIANG , Zhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291
-
[20]
Jingjie Tang , Luying Xie , Jiayu Liu , Shangyu Shi , Xinyu Sun , Jiayang Lin , Qikun Yang , Chuan'ang Yu , Zecheng Wang , Yingying Wang , Zengyang Xie . Efficient Rapid Synthesis and Antibacterial Activities of Tosylhydrazones: A Recommended Innovative Chemistry Experiment for Undergraduate Medical University. University Chemistry, 2024, 39(3): 316-326. doi: 10.3866/PKU.DXHX202309091
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(578)
- HTML views(39)