Citation: LI Xiao-hong, MA Jiang-shan, XUE Yan-li, LI Wen-ying. Properties of semi-coke from co-pyrolysis of lignite and direct liquefaction residue of Shendong coal[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(11): 1281-1286. shu

Properties of semi-coke from co-pyrolysis of lignite and direct liquefaction residue of Shendong coal

  • Corresponding author: LI Wen-ying, 
  • Received Date: 26 June 2015
    Available Online: 27 August 2015

    Fund Project: 国家自然科学基金(U1361202) (U1361202)国家高技术研究发展计划(863计划,2011AA05A202)资助项目 (863计划,2011AA05A202)

  • In order to make use of coal direct liquefaction residue efficiently, co-pyrolysis of Hulunbuir lignite and direct liquefaction residue (DLR) of Shendong coal were conducted in a fixed bed reactor under atmospheric pressure. The physicochemical properties of co-pyrolysis semi-coke were analyzed by scanning electron microscope, nitrogen adsorption-desorption, X-ray diffraction, Raman spectroscopy and thermogravimetric analyzer. The results show that DLR semi-coke and lignite semi-coke are cohered each other, because the DLR is softened and melted during co-pyrolysis. The specific surface area and pore volume of co-pyrolysis semi-coke decrease. Characterization of both XRD and Raman spectroscopy indicate that the order degree of co-pyrolysis semi-coke increases with the addition of DLR. Compared with the lignite semi-coke, the CO2 gasification reactivity of co-pyrolysis semi-coke decreases.
  • 加载中
    1. [1]

      [1] HIRANO K. Outline of NEDOL coal liquefaction process development (pilot plant program)[J]. Fuel Process Technol, 2000, 62(2): 109-118.

    2. [2]

      [2] 方磊, 周俊虎, 周志军, 刘建忠, 岑可法. 煤液化残渣与褐煤混煤燃烧特性的实验研究[J]. 燃料化学学报, 2006, 34(2): 245-248. (FANG Lei, ZHOU Jun-hu, ZHOU Zhi-jun, LIU Jian-zhong, CEN Ke-fa. Combustion performance of the blend of lignite and residues of coal liquefaction in thermal-banlance[J]. J Fuel Chem Technol, 2006, 34(2): 245-248.)

    3. [3]

      [3] 舒歌平, 史士东, 李克建. 煤炭液化技术[M]. 北京: 煤炭工业出版社, 2003: 91-94. (SHU Ge-ping, SHI Shi-dong, LI Ke-jian. Coal liquefaction technology[M]. Beijng: China Industry Publishing House, 2003: 91-94.)

    4. [4]

      [4] 赵丽红, 楚希杰. 催化剂对煤直接液化残渣气化反应性的影响[J]. 煤炭科学技术, 2011, 39(9): 125-128. (ZHAO Li-hong, CHU Xi-jie. Catalyst affected to residue gasification reactivity of direct coal liquefaction[J]. Coal Sci Technol, 2011, 39(9): 125-128.)

    5. [5]

      [5] LI X H, XUE Y L, FENG J, YI Q, LI W Y, GUO X F, LIU K. Co-pyrolysis of lignite and Shendong coal direct liquefaction residue[J]. Fuel, 2015, 144: 342-348.

    6. [6]

      [6] 楚希杰, 李文, 李保庆, 陈皓侃, 白宗庆. 煤直接液化残渣焦CO2气化反应的研究[J]. 燃料化学学报, 2006, 34(2): 146-150. (CHU Xi-jie, LI Wen, LI Bao-qing, CHEN Hao-kan, BAI Zong-qing. Gasification characteristics of coal liquefaction residues with carbon dioxide[J]. J Fuel Chem Technol, 2006, 34(2): 146-150.)

    7. [7]

      [7] 邓靖, 李文英, 李晓红, 喻长连, 冯杰, 郭小汾. 橄榄石基固体热载体影响褐煤热解产物分布的分析[J]. 燃料化学学报, 2013, 41(8): 937-942. (DENG Jing, LI Wen-ying, LI Xiao-hong, YU Chang-lian, FENG Jie, GUO Xiao-fen. Product distribution of lignite pyrolysis with olivine-based solid heat carrier[J]. J Fuel Chem Technol, 2013, 41(8): 937-942.)

    8. [8]

      [8] 顾菁, 吴诗勇, 张晓, 吴幼青, 高晋生. 高温下兖州煤焦/CO2气化反应性[J]. 煤炭转化, 2007, 30(4): 34-37. (GU Jing, WU Shi-yong, ZHANG xiao, WU You-qing, GAO Jin-sheng. CO2 gasification reactivity of Yanzhou coal chars at elevated temperatures[J]. Coal Convers, 2007, 30(4): 34-37.)

    9. [9]

      [9] 吴加奇, 许慎启, 周志杰, 于广锁, 王辅臣. 高温下渣熔融对煤焦-CO2气化反应特性的影响[J], 燃料化学学报, 2012, 40(1): 21-28. (WU Jia-qi, XU Shen-qi, ZHOU Zhi-jie, YU Guang-suo, WANG Fu-chen. Effects of molten slag on coal gasification reaction with CO2 at elevated temperature[J]. J Fuel Chem Technol, 2012, 40(1): 21-28.)

    10. [10]

      [10] GONG X Z, GUO Z C, WANG Z. Variation of char structure during anthracite pyrolysis catalyzed by Fe2O3 and its influence on char combustion reactivity[J]. Energy Fuels, 2009, 23(9): 4547-4552.

    11. [11]

      [11] SHENG C D. Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity[J]. Fuel, 2007, 86(15): 2316-2324.

    12. [12]

      [12] 李建广, 房倚天, 张永奇, 李春玉, 王洋. 煤直接液化残渣快速热解半焦特性的研究[J]. 燃料化学学报, 2008, 36(3): 273-278. (LI Jian-guang, FANG Yi-tian, ZHANG Yong-qi, LI Chun-yu, WANG Yang. Property of char from fast pyrolysis of direct coal liquefaction residue[J]. J Fuel Chem Technol, 2008, 36(3): 273-278.)

    13. [13]

      [13] 王鹏, 步学朋, 忻仕河, 邓一英. 煤直接液化残渣热解特性研究[J]. 煤化工, 2005, (2): 20-23. (WANG Peng, BU Xue-peng, XIN Shi-he, DENG Yi-ying. Study on the pyrolysis characteristics of coal liquefaction residues[J]. Coal Chem Ind, 2005, (2): 20-23.)

    14. [14]

      [14] 罗陨飞, 李文华. 中低变质程度煤显微组分大分子结构的XRD研究[J]. 煤炭学报, 2004, 29(3): 338-341. (LUO Yun-fei, LI Wen-hua. X-ray diffraction analysis on the different macerals of several low-to-medium metamorpic grade coals[J]. J China Coal Soc, 2004, 29(3): 338-341.)

    15. [15]

      [15] 陈路, 周志杰, 刘鑫, 袁帅, 王辅臣. 煤快速热解焦的微观结构对其气化活性的影响[J]. 燃料化学学报, 2012, 40(6): 648-654. (CHEN Lu, ZHOU Zhi-jie, LIU Xin, YUAN Shuai, WANG Fu-chen. Effect of microstructure of rapid pyrolysis char on its gasification reactivity[J]. J Fuel Chem Technol, 2012, 40(6): 648-654.)

    16. [16]

      [16] LU L M, SAHAJWALLA V, HARRIS D. Characteristics of chars prepared from various pulverized coals at different temperatures using drop-tube furnace[J]. Energy Fuels, 2000, 14(4): 869-876.

  • 加载中
    1. [1]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    2. [2]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Haiyu Zhu Zhuoqun Wen Wen Xiong Xingzhan Wei Zhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078

    7. [7]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    8. [8]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    10. [10]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    11. [11]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    12. [12]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    13. [13]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    16. [16]

      Xiang-Da ZhangJian-Mei HuangXiaorong ZhuChang LiuYue YinJia-Yi HuangYafei LiZhi-Yuan Gu . Auto-tandem CO2 reduction by reconstructed Cu imidazole framework isomers: Unveiling pristine MOF-mediated CO2 activation. Chinese Chemical Letters, 2025, 36(5): 109937-. doi: 10.1016/j.cclet.2024.109937

    17. [17]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    18. [18]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    19. [19]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    20. [20]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

Metrics
  • PDF Downloads(0)
  • Abstract views(408)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return