Citation: SHI Bin, CHENG Wen-wen, KONG Qing-yang. Hydrogenation of phenol over Urushibara Ni catalysts reduced by zinc powder[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(10): 1252-1257. shu

Hydrogenation of phenol over Urushibara Ni catalysts reduced by zinc powder

  • Corresponding author: SHI Bin, 
  • Received Date: 8 February 2015
    Available Online: 2 June 2015

    Fund Project: 中央高校基本科研业务费专项资金(27R1104054A)资助项目 (27R1104054A)

  • Urushibara nickel catalysts were prepared from aqueous NiCl2 solution with zinc powder as a reducing agent and used in phenol hydrogenation. The effects of zinc powder amount, reduction temperature and pretreatment-activation method on the catalytic performance of Urushibara nickel in phenol hydrogenation was investigated. To inhibit the magnetic agglomeration of the pure nickel catalyst, γ-Al2O3, CaCO3 and MgO were added as a support. The results indicated that the nickel catalysts obtained by zinc reduction can be pretreated and activated by NaOH or acetic acid solution, though the former is superior to the latter. The catalytic activity of Urushibara nickel is related to the amount of zinc used for the reduction. The nickel catalyst reduced at 100 ℃ with an n(Zn)/n(NiCl2·6H2O) ratio of 4.5 exhibits the highest hydrogenation activity. γ-Al2O3 as a support can promote the dispersion and sediment of the reduced nickel and alleviate the magnetic agglomeration. The Urushibara nickel catalysts are active for phenol hydrogenation at 120~160 ℃, with cyclohexanol and cyclohexanone as the main products; the conversion of phenol reaches 53%~66%, with the selectivity of 95.0%~96.0% to cyclohexanol.
  • 加载中
    1. [1]

      [1] 高晋生. 煤的热解、 炼焦和煤焦油加工[M]. 北京: 化学工业出版社, 2010, 259-357. (GAO Jin-sheng. The pyrolysis and coking of coal and coal-tar processing[M]. Beijing: Chemical Industry Press, 2010, 259-357.)

    2. [2]

      [2] 郭志武, 靳海波, 佟泽民. 环己酮、 环己醇制备技术进展[J]. 化工进展, 2006, 25(8): 852-859. (GUO Zhi-wu, JIN Hai-bo, TONG Ze-min. Advances in techniques for production of cyclohexanone and cyclohexanol[J]. Chem Ind Eng Prog(China), 2006, 25(8): 852-859.)

    3. [3]

      [3] TALUKDAR A K, BHATTACHARYYA K G, SIVASANKER S. Hydrogenation of phenol over supported platinum and palladium catalysts[J]. Appl Catal A: Gen, 1993, 96 (2): 229-239.

    4. [4]

      [4] SRINIVAS S T, RAO P K. Synthesis, characterization and activity studies of carbon supported platinum alloy catalysts[J]. J Catal, 1998, 179(1): 1-17.

    5. [5]

      [5] MAHATA N, VISHWANATHAN V. Influence of palladium precursors on structural properties and phenol hydrogenation characteristics of supported palladium catalysts[J]. J Catal, 2000, 196(2): 262-270.

    6. [6]

      [6] 朱俊华, 丁洁莲, 曾崇余. 载体对Pd催化剂苯酚加氢制备环己酮性能的影响[J]. 催化学报, 2007, 28(5): 441-445. (ZHU Jun-hua, DING Jie-lian, ZENG Chong-yu. Effect of supports on catalytic performance of palladium catalysts for hydrogenation of phenol to cyclohexanone[J]. Chin J Catal, 2007, 28(5): 441-445.)

    7. [7]

      [7] LU F, LIU J. Synthesis of chain-like Ru nanoparticle arrays and its catalytic activity for hydrogenation of phenol in aqueous media[J]. Mater Chem Phys, 2008, 108(2/3): 369-374.

    8. [8]

      [8] 王鸿静, 项益智, 徐铁勇, 周汉君, 马磊, 李小年. Ba修饰的Pd/Al2O3对苯酚液相原位加氢制环己酮反应的催化性能[J]. 催化学报, 2009, 30(9): 933-938. (WANG Hong-jing, XIANG Yi-zhi, XU Tie-yong, ZHOU Han-jun, MA Lei, LI Xiao-nian. Catalytic performance of Ba-Modified Pd/Al2O3 for liquid phase in situ hydrogenati on of phenol to cyclohexanone[J]. Chin J Catal, 2009, 30(9): 933-938.)

    9. [9]

      [9] 项益智, 卢春山, 张群峰, 马磊, 巫晓琼, 李小年. Raney Ni催化剂上苯酚液相原位加氢表观动力学[J]. 化工学报, 2008, 59(8): 2007-2013. (XIANG Yi-zhi, LU Chun-shan, ZHANG Qun-feng, MA Lei, WU Xiao-qiong, LI Xiao-nian. Apparent kinetics of in-situ hydrogenation of phenol in liquid phase over Raney Ni catalyst[J]. J Chem Ind Eng, 2008, 59(8): 2007-2013.)

    10. [10]

      [10] HU S, XUE M, CHEN H, SHEN J. The effect of surface acidic and basic properties on the hydrogenation of aromatic rings over the supported nickel catalysts[J]. Chem Eng J, 2010, 162(1): 371-379.

    11. [11]

      [11] LIU H, JIANG T, HAN B, LIANG S, ZHOU Y. Selective phenol hydrogenation to cyclohexanone over a dual supported Pd-Lewis acid catalyst[J]. Science, 2009, 326(5957): 1250-1252.

    12. [12]

      [12] 姬生菲, 申延明, 刘东斌, 徐世博. Pd/CNTs苯酚气相加氢制环己酮催化剂[J]. 沈阳化工大学学报, 2012, 26(1): 26-30. (JI Sheng-fei, SHEN Yan-ming, LIU Dong-bin, XU Shi-bo. Gas-phase hydrogenation of phenol to cyclohexanone over Pd/CNTs catalyst[J]. J Shenyang Univ Chem Technol, 2012, 26(1): 26-30.)

    13. [13]

      [13] URUSHIBARA Y. A new method of catalytic hydrogenation[J]. Bull Chem Soc Japan, 1952, 25(4): 280-280.

    14. [14]

      [14] KLEIN J C, HERCULES D M. Surface characterization of model Urushibara catalysts[J]. J Catal, 1983, 82(2): 424-441.

    15. [15]

      [15] YAN Z, LIN L, LIU S. Synthesis of γ-Valerolactone by hydrogenation of biomass-derived levulinic acid over Ru/C catalyst[J]. Energy Fuels, 2009, 23(8): 3853-3858.

    16. [16]

      [16] 陈晓冬, 叶志文. 漆原镍催化加氢制备间甲苯胺[J]. 精细石油化工, 2007, 24(4): 18-21. (CHEN Xiao-dong, YE Zhi-wen. Catalytic performance of urushibara nickel catalyst for m-toluidine synthesis[J]. Spec Petrochem, 2007, 24(4): 18-21.)

    17. [17]

      [17] HORIKOSHI S, TSUZUKI J, SAKAI F, KAJITANI M, SERPONE N. Microwave effect on the surface composition of the Urushibara Ni hydrogenation catalyst and improved reduction of acetophenone[J]. Chem Comun, 2008, 37: 4501-4503.

    18. [18]

      [18] 刘皓, 李若愚, 张濛, 李伟, 张明慧, 陶克毅. 漆原镍催化剂用于硝基化合物催化加氢[J]. 催化学报, 2009, 30(7): 606-612. (LIU Hao, LI Ruo-yu, ZHANG Meng, LI Wei, ZHANG Ming-hui, TAO Ke-yi. Hydrogenation of nitro compounds catalyzed by urushibara nickel catalysts hydrogenation of nitro compounds catalyzed by urushibara nickel catalysts[J]. Chin J Catal, 2009, 30(7): 606-612.)

    19. [19]

      [19] 陈金芳, 贾涛, 黄筱玲. 4-甲基-2-硝基苯胺常压液相漆原镍催化加氢制备4-甲基邻苯二胺[J]. 应用化学, 2000, 17(6): 672-674. (CHEN Jin-fang, JIA Tao, HUANG Xiao-ling. Preparation of toluene-3, 4-diamine from 2-Nitro-4-aminotoluene catalyzed by urushibara-Ni[J]. Chin J Appl Chem, 2000, 17(6): 672-674.)

  • 加载中
    1. [1]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    5. [5]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    6. [6]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    7. [7]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    12. [12]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    13. [13]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    16. [16]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    17. [17]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    18. [18]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    19. [19]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    20. [20]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

Metrics
  • PDF Downloads(0)
  • Abstract views(1284)
  • HTML views(253)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return